Skip to main content

Instabilities

  • Chapter
  • First Online:
  • 4525 Accesses

Abstract

The stability of a plasma system can be analyzed by different methods. For a simple mechanical system, such as the pendulum consisting of a massless rod and a bob shown in Fig. 8.1a, stability is defined by the property that a deflection from the equilibrium position (shown in grey) leads to a restoring force F rest, which drives the pendulum back to its original position. The interplay of a restoring force, which is proportional to the deflection, and the inertia of the pendulum bob leads to harmonic oscillations.

“And if you take one from three hundred and sixty-five, what remains?”

“Three hundred and sixty four, of course.”

Humpty-Dumpty looked doubtful. “I’d rather see that worked out on paper.”

Lewis Carroll, Through the Looking-Glass

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Langmuir, Phys. Rev. 33, 954 (1929)

    Article  ADS  Google Scholar 

  2. J. Dawson, Phys. Fluid. 4, 869 (1961)

    Article  ADS  Google Scholar 

  3. P.C. Clemmow, J.P. Dougherty, Electrodynamics of Particles and Plasmas (Addison-Wesley, Reading MA, 1969)

    Google Scholar 

  4. O. Buneman, Phys. Rev. Lett. 1, 8 (1958)

    Article  ADS  Google Scholar 

  5. J.R. Pierce, J. Appl. Phys. 15, 721 (1944)

    Article  ADS  Google Scholar 

  6. J.R. Pierce, J. Appl. Phys. 19, 231 (1948)

    Article  ADS  Google Scholar 

  7. J.R. Pierce, J. Appl. Phys. 21, 1063 (1950)

    Article  ADS  Google Scholar 

  8. J. Frey, C.K. Birdsall, J. Appl. Phys. 36, 2962 (1965)

    Article  ADS  Google Scholar 

  9. J.R. Cary, D.S. Lemons, J. Appl. Phys. 53, 3303 (1982)

    Article  ADS  Google Scholar 

  10. I.N. Kolyshkin, V. I.Kuznetsov, A.Y. Ender, Sov. Phys. Tech. Phys. 29, 882 (1984a)

    Google Scholar 

  11. S. Kuhn, Phys. Fluid. 27, 1821 (1984)

    Article  MATH  ADS  Google Scholar 

  12. S. Kuhn, Phys. Fluid. 27, 1834 (1984)

    Article  MATH  ADS  Google Scholar 

  13. S. Kuhn, M. Hörhager, J. Appl. Phys. 60, 1952 (1986)

    Article  ADS  Google Scholar 

  14. S. Kuhn, Contrib. Plasma Phys. 34, 495 (1994)

    Article  ADS  Google Scholar 

  15. A.Y. Ender, S. Kuhn, V.I. Kuznetsov, Phys. Plasma. 13, 113506 (2006)

    Article  ADS  Google Scholar 

  16. B.B. Godfrey, Phys. Fluid. 30, 1553 (1987)

    Article  ADS  Google Scholar 

  17. W.S. Lawson, Phys. Fluids . 1, 1483 (1989)

    Article  MathSciNet  Google Scholar 

  18. W.S. Lawson, Phys. Fluids . 1, 1493 (1989)

    Article  MathSciNet  Google Scholar 

  19. H. Schamel, V. Maslov, Phys. Rev. Lett. 70, 1105 (1993)

    Article  ADS  Google Scholar 

  20. H. Kolinsky, H. Schamel, Phys. Plasma. 1, 2359 (1994)

    Article  ADS  Google Scholar 

  21. T.L. Crystal, S. Kuhn, Phys. Fluid. 28, 2116 (1985)

    Article  ADS  Google Scholar 

  22. H. Matsumoto, H. Yokoyama, D. Summers, Phys. Plasma. 3, 177 (1996)

    Article  ADS  Google Scholar 

  23. A.E. Hramov, A.A. Koronovskii, I.S. Rempen, Chao. 16, 013123 (2006)

    Article  ADS  Google Scholar 

  24. N. Krahnstöver, T. Klinger, F. Greiner, A. Piel, Phys. Lett. . 239, 103 (1998)

    Article  Google Scholar 

  25. H. Friedel, R. Grauer, K.H. Spatschek, Phys. Plasma. 5, 3187 (1998)

    Article  ADS  Google Scholar 

  26. A.A. Koronovskii, I.S. Rempen, A.E. Khramov, Tech. Phys. Lett. 29, 998 (2003)

    Article  ADS  Google Scholar 

  27. M. Kočan, S. Kuhn, D. Tskhakaya (jr.), Contrib. Plasma Phys. 46, 322 (2006)

    Google Scholar 

  28. C.K. Birdsall, W.B. Bridges, J. Appl. Phys. 32, 2611 (1961)

    Article  ADS  Google Scholar 

  29. C.K. Birdsall, W.B. Bridges, Electron Dynamics in Diode Regions (Academic, New York, 1966)

    Google Scholar 

  30. D.T. Farley, B.B. Balsley, R.F. Woodman, J.P. McClure, J. Geophys. Res. 75, 7199 (1970)

    Article  ADS  Google Scholar 

  31. S.L. Ossakow, J. Atmos. Terr. Phys. 43, 437 (1981)

    Article  ADS  Google Scholar 

  32. M.C. Kelley, et al., J. Geophys. Res. 91, 5487 (1986)

    Article  ADS  Google Scholar 

  33. R.F. Pfaff, H.A. Sobral, M.A. Abdu, W.E. Swartz, J.W. LaBelle, M.F. Larsen, R.A. Goldberg, F.J. Schmidlin, Geophys. Res. Lett. 24, 1663 (1997)

    Article  ADS  Google Scholar 

  34. C.T. Steigies, D. Block, M. Hirt, A. Piel, J. Geophys. Res. 106, 12765 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Piel .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piel, A. (2010). Instabilities. In: Plasma Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10491-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10491-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10490-9

  • Online ISBN: 978-3-642-10491-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics