Skip to main content

Fluid Models

  • Chapter
  • First Online:
Plasma Physics
  • 4595 Accesses


In the single-particle model (Chap. 3) the motion of the particles was derived from fixed external electric and magnetic fields. This approach is very useful to obtain a first insight into the richness of plasma motion, which results in a host of particle drifts. The major drawback of this model is the neglect of the modification of the fields by the electric currents represented by these drifts. The present chapter on fluid models attempts to overcome this weakness.

“The time has come,” the Walrus said, “To talk of many things: Of shoes—and ships—and sealing wax— Of cabbages—and kings— And why the sea is boiling hot— And whether pigs have wings.”

Lewis Carroll, Through the Looking-Glass

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E.N. Parker, Ap. J. 128, 664 (1958)

    Article  ADS  Google Scholar 

  2. W. Panofsky, M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, Reading MA, 1969)

    Google Scholar 

  3. C. Truesdell, Phys. Rev. 78, 823 (1950)

    Article  MathSciNet  ADS  Google Scholar 

  4. W.H. Bennett, Phys. Rev. 45, 890 (1934)

    Article  ADS  Google Scholar 

  5. R.B. Spielman, C. Deeney, G.A. Chandler, M.R. Douglas, et al., Phys. Plasma. 5, 2105 (1998)

    Article  ADS  Google Scholar 

  6. M.E. Cuneo, D.B. Sinars, E.M. Waisman, D.E. Bliss, et al., Phys. Plasma. 15, 056318 (2006)

    Article  ADS  Google Scholar 

  7. H. Alfvén, Natur. 150, 405 (1942)

    Article  ADS  Google Scholar 

  8. H. Alfvén, C.G. Fälthammar, Cosmical Electrodynamics (Clarendon, Oxford, 1950)

    MATH  Google Scholar 

  9. S. Lundquist, Natur. 164, 145 (1949)

    Article  ADS  Google Scholar 

  10. B. Lehnert, Phys. Rev. 94, 815 (1954)

    Article  MATH  ADS  Google Scholar 

  11. W.H. Bostick, M.A. Levine, Phys. Rev. 87, 671 (1952)

    Article  ADS  Google Scholar 

  12. D.F. Jephcott, Natur. 183, 1652 (1959)

    Article  ADS  Google Scholar 

  13. J.M. Wilcox, F.I. Boley, A.W. De Silva, Phys. Fluid. 3, 15 (1960)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alexander Piel .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Piel, A. (2010). Fluid Models. In: Plasma Physics. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10490-9

  • Online ISBN: 978-3-642-10491-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics