Skip to main content

Corecursive Algebras: A Study of General Structured Corecursion

  • Conference paper
Formal Methods: Foundations and Applications (SBMF 2009)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5902))

Included in the following conference series:

Abstract

Motivated by issues in designing practical total functional programming languages, we are interested in structured recursive equations that uniquely describe a function not because of the properties of the coalgebra marshalling the recursive call arguments but thanks to the algebra assembling their results. Dualizing the known notions of recursive and wellfounded coalgebras, we call an algebra of a functor corecursive, if from any coalgebra of the same functor there is a unique map to this algebra, and antifounded, if it admits a bisimilarity principle. Differently from recursiveness and wellfoundedness, which are equivalent conditions under mild assumptions, corecursiveness and antifoundedness turn out to be generally inequivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adámek, J., Lücke, D., Milius, S.: Recursive coalgebras for finitary functors. Theor. Inform. and Appl. 41(4), 447–462 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bove, A., Capretta, V.: Modelling general recursion in type theory. Math. Struct. in Comput. Sci. 14(4), 671–708 (2005)

    Article  MathSciNet  Google Scholar 

  3. Buchholz, W.: A term calculus for (co-)recursive definitions on streamlike data structures. Ann. of Pure and Appl. Logic 136(1–2), 75–90 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. Inform. and Comput. 204(4), 437–468 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cockett, R., Fukushima, T.: About Charity. Yellow series report 92/480/18, Dept. of Comput. Sci., Univ. of Calgary (1992)

    Google Scholar 

  6. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994)

    Google Scholar 

  7. Di Gianantonio, P., Miculan, M.: A unifying approach to recursive and co-recursive definitions. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 148–161. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Doornbos, H., Backhouse, R.: Reductivity. Sci. of Comput. Program 26(1-3), 217–236 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Eppendahl, A.: Coalgebra-to-algebra morphisms. Electron. Notes in Theor. Comput. Sci. 29, 8 (1999)

    MathSciNet  Google Scholar 

  10. Giménez, E.: Codifying guarded definitions with recursion schemes. In: Smith, J., Dybjer, P., Nordström, B. (eds.) TYPES 1994. LNCS, vol. 996, pp. 39–59. Springer, Heidelberg (1995)

    Google Scholar 

  11. Jacobs, B.: The temporal logic of coalgebras via Galois algebras. Math. Struct. in Comput. Sci. 12(6), 875–903 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Milius, S.: Completely iterative algebras and completely iterative monads. Inform. and Comput. 196(1), 1–41 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Osius, G.: Categorical set theory: a characterization of the category of sets. J. of Pure and Appl. Algebra 4, 79–119 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Taylor, P.: Intuitionistic sets and ordinals. J. of Symb. Logic 61(3), 705–744 (1996)

    Article  MATH  Google Scholar 

  15. Taylor, P.: Towards a unified treatment of induction, I: The general recursion theorem. Unpublished draft 35 pp (1996); // A short version (1996) of 5 pp was distributed at Gödel 1996 Brno (August 1996), http://www.monad.me.uk/ordinals/

  16. Taylor, P.: Practical foundations of mathematics. Cambridge Studies in Advanced Mathematics, vol. 59, xi+572. Cambridge Univ. Press, Cambridge (1999)

    MATH  Google Scholar 

  17. Turner, D.A.: Total functional programming. J. of Univ. Comput. Sci. 10(7), 751–768 (2004)

    Google Scholar 

  18. Uustalu, T., Vene, V.: Primitive (co)recursion and course-of-value (co)iteration, categorically. Informatica 10(1), 5–26 (1999)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Capretta, V., Uustalu, T., Vene, V. (2009). Corecursive Algebras: A Study of General Structured Corecursion. In: Oliveira, M.V.M., Woodcock, J. (eds) Formal Methods: Foundations and Applications. SBMF 2009. Lecture Notes in Computer Science, vol 5902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10452-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10452-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10451-0

  • Online ISBN: 978-3-642-10452-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics