Advertisement

Non-Perturbative Methods in (1+1) Dimensional Quantum Field Theory

  • Giuseppe MussardoEmail author
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 843)

Abstract

In recent years there has been an enormous progress in low-dimensional quantum field theory. The most important results concern the conformal properties of the critical points of the Renormalization Group and the scaling region nearby. In this respect a crucial role is played by integrable deformations of Conformal Field Theories, which can be solved using bootstrap methods coming from S-matrix theory. In these lectures I present the Form-Factor Approach to the computation of correlation functions. Non-perturbative methods of both Conformal and Integrable Field Theories find remarkable applications in low-dimensional quantum systems.

References

  1. 1.
    Privman, V., Hohenberg, P.C., Aharony, A.: Universal critical-point amplitude relations. In: Domb, C., Green, M. S. (eds.) Phase Transitions, vol. 14. Academic Press, NYGoogle Scholar
  2. 2.
    Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333 (1984)CrossRefzbMATHADSMathSciNetGoogle Scholar
  3. 3.
    Friedan, D., Qiu, Z., Shenker, S.: Conformal invariance, unitarity, and critical exponents in two dimensions. Phys. Rev. Lett. 52, 1575 (1984)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Zamolodchikov, A.B.: Integrable field theory from conformal field. Adv. Stud. Pure Math. 19, 641 (1989)MathSciNetGoogle Scholar
  5. 5.
    Karowski, M., Weisz, P.: Exact form-factors in \((1+1)\)-dimensional field theoretic models with soliton behavior. Nucl. Phys. B 139, 455 (1978)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Smirnov, F.: Form factors in completly integrable models of quantum field theory. World Scientific, Singapore (1992)Google Scholar
  7. 7.
    Yurov, V.P., Zamolodchikov, Al.B.: Correlation functions of integrable 2-D models of relativistic field theory. Ising model. Int. J. Mod. Phys. A 6, 3419 (1991)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Zamolodchikov, Al.B.: Two point correlation function in scaling Lee-Yang model. Nucl. Phys. B 348, 619 (1991)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Delfino, G., Mussardo, G.: The Spin spin correlation function in the two-dimensional Ising model in a magnetic field at \(T = T_c.\) Nucl. Phys. B 455, 724 (1995)CrossRefzbMATHADSMathSciNetGoogle Scholar
  10. 10.
    Delfino, G., Simonetti, P.: Correlation functions in the two-dimensional Ising model in a magnetic field at \(T = T_c.\) Phys. Lett. B 383, 450 (1996)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Cardy, J., Mussardo, G.: Universal properties of self-avoiding walks from two-dimensional field theory. Nucl. Phys. B 410, 451 (1993)CrossRefzbMATHADSMathSciNetGoogle Scholar
  12. 12.
    Cardy, J.L., Mussardo, G.: Form-factors of descendent operators in perturbed conformal field theories. Nucl. Phys. B 340, 387 (1990)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Fring, A., Mussardo, G., Simonetti, P.: Form-factors for integrable Lagrangian field theories, the sinh-Gordon theory. Nucl. Phys. B 393, 413 (1993)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Koubek, A., Mussardo, G.: On the operator content of the sinh-Gordon model. Phys. Lett. B 311, 193 (1993)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Mussardo, G., Simonetti, P.: Stress–energy tensor and ultraviolet behavior in massive integrable quantum field theories. Int. J. Mod. Phys. A 9, 3307 (1994)CrossRefzbMATHADSMathSciNetGoogle Scholar
  16. 16.
    Essler, F., Konik, R.: Applications of massive integrable quantum field theories to problems in condensed matter physics, in from fields to strings: circumnavigating theoretical physics. World Scientific, Singapore (2005)Google Scholar
  17. 17.
    Delfino, G., Simonetti, P., Cardy, J.L.: Asymptotic factorization of form-factors in two-dimensional quantum field theory. Phys. Lett. B 387, 327 (1996)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Zamolodchikov, A.B.: Irreversibility of the flux of the renormalization group in a 2D field theory. JETP Lett. 43, 730 (1986)ADSMathSciNetGoogle Scholar
  19. 19.
    Cardy, J.L.: The central charge and universal combinations of amplitudes in two-dimensional theories away from criticality. Phys. Rev. Lett. 60, 2709 (1988)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Delfino, G.: Integrable field theory and critical phenomena. The Ising model in a magnetic field. Jour. Phys. A 37, R45 (2004)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Wu, T.T., McCoy, B., Tracy, C., Barouch, E.: Spin-spin correlation functions for the two-dimensional Ising model: exact theory in the scaling region. Phys. Rev. B 13, 316 (1976)CrossRefADSGoogle Scholar
  22. 22.
    McCoy, B., Tracy, C., Wu, T.T.: Painlevé functions of the third kind. Jour. Math. Phys. 18, 1058 (1977)CrossRefzbMATHADSMathSciNetGoogle Scholar
  23. 23.
    Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients : i general theory and \(\tau\)-function. Phys D 2, 306 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Coldea, R., Tennant, D.A., Wheeler, E.M., Wawrzynska, E., Prabhakaran, D., Telling, M., Habicht, K., Smeibidl, P., Kiefer, K.: Quantum criticality in an Ising chain: experimental evidence for emergent \(E_8\) symmetry. Science 327, 177 (2010)CrossRefADSGoogle Scholar
  25. 25.
    Delfino, G., Mussardo, G., Simonetti, P.: Nonintegrable quantum field theories as perturbations of certain integrable models. Nucl. Phys. B 473, 469 (1996)CrossRefzbMATHADSMathSciNetGoogle Scholar
  26. 26.
    Delfino, G., Mussardo, G.: Nonintegrable aspects of the multifrequency sine-gordon model. Nucl. Phys. B 516, 675 (1998)CrossRefzbMATHADSMathSciNetGoogle Scholar
  27. 27.
    Controzzi, D., Mussardo, G.: On the mass spectrum of the two-dimensional O(3) sigma model with theta term. Phys. Rev. Lett. 92, 021601 (2004)CrossRefADSGoogle Scholar
  28. 28.
    Delfino, G., Grinza, P., Mussardo, G.: Decay of particles above threshold in the Ising field theory with magnetic field. Nucl. Phys. B 737, 291 (2006)CrossRefzbMATHADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.SISSATriesteItaly

Personalised recommendations