Nonequilibrium Transport and Dephasing in Coulomb-Blockaded Quantum Dots

  • Alexander AltlandEmail author
  • Reinhold Egger
Part of the Lecture Notes in Physics book series (LNP, volume 843)


We provide an introduction to the nonequilibrium physics encountered in quantum dots. A brief summary of the relevant Coulomb blockade physics and a concise account of the Keldysh functional integral method is followed by a derivation of the Keldysh Ambegaokar-Eckern-Schön action, which represents a prototypical model for charge transport through quantum dots. We show that the nonequilibrium current fluctuations cause a dephasing that can be probed via the tunneling density of states. We provide analytical and numerical estimates for the corresponding dephasing rates.


Coulomb Blockade Kondo Effect Numerical Renormalization Group Full Counting Statistic Coulomb Blockade Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge support by the SFB Transregio 12 by the Deutsche Forschungsgemeinschaft.


  1. 1.
    Nazarov, Y.V., Blanter, Y.M.: Quantum Transport: Introduction to Nanoscience. Cambridge University Press, Cambridge (2009)Google Scholar
  2. 2.
    Esposito, M., Harbola, U., Mukamel, S.: Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81, 1665 (2009)CrossRefzbMATHADSMathSciNetGoogle Scholar
  3. 3.
    Weiss, S., Eckel, J., Thorwart, M., Egger, R.: Iterative real-time path integral approach to nonequilibrium quantum transport. Phys. Rev. B 77, 195316 (2008)CrossRefADSGoogle Scholar
  4. 4.
    Anders, F.B.: Steady-state currents through nanodevices: a scattering-states numerical renormalization-group approach to open quantum systems. Phys. Rev. Lett. 101, 066804 (2008)CrossRefADSGoogle Scholar
  5. 5.
    Boulat, E., Saleur, H., Schmitteckert, P.: Twofold advance in the theoretical understanding of far-from-equilibrium properties of interacting nanostructures. Phys. Rev. Lett. 101, 140601 (2008)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Metha, P., Andrei, N.: Nonequilibrium transport in quantum impurity models: the Bethe ansatz for open systems. Phys. Rev. Lett. 96, 216802 (2006)CrossRefADSGoogle Scholar
  7. 7.
    Alhassid, Y.: The statistical theory of quantum dots. Rev. Mod. Phys. 72, 895 (2000)CrossRefADSGoogle Scholar
  8. 8.
    Aleiner, I.L., Brouwer, P.W., Glazman, L.I.: Quantum effects in Coulomb blockade. Phys. Rep. 358, 309 (2002)CrossRefADSGoogle Scholar
  9. 9.
    Kamenev, A., Levchenko, A.: Keldysh technique and non-linear \(\sigma\)-model: basic principles and applications. Adv. Phys. 58, 197 (2009)CrossRefADSGoogle Scholar
  10. 10.
    Kamenev, A., Andreev, A.: Electron–electron interactions in disordered metals: Keldysh formalism. Phys. Rev. B 60, 2218 (1999)CrossRefADSGoogle Scholar
  11. 11.
    Altland, A., Simons, B.D.: Condensed Matter Field Theory, 2nd edn. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    Altland, A., Egger, R.: Nonequilibrium dephasing in coulomb blockaded quantum dots. Phys. Rev. Lett. 102, 026805 (2009)CrossRefADSGoogle Scholar
  13. 13.
    Kaminski, A., Nazarov, Yu.V., Glazman, L.I.: Suppression of the Kondo effect in a quantum dot by external irradiation. Phys. Rev. Lett. 83, 384 (1999)CrossRefADSGoogle Scholar
  14. 14.
    Rosch, A., Paaske, J., Kroha, J., Wölfle, P.: Nonequilibrium transport through a Kondo dot in a magnetic field: perturbation theory and poor man’s scaling. Phys. Rev. Lett. 90, 076804 (2003)CrossRefADSGoogle Scholar
  15. 15.
    Kehrein, S.: Scaling and decoherence in the nonequilibrium Kondo model. Phys. Rev. Lett. 95, 056602 (2005)CrossRefADSGoogle Scholar
  16. 16.
    Muzykantskii, B., d’Ambrumenil, N., Braunecker, B.: Fermi-edge singularity in a nonequilibrium system. Phys. Rev. Lett. 91, 266602 (2003)CrossRefADSGoogle Scholar
  17. 17.
    Mitra, A., Millis, A.J.: Coulomb gas on the Keldysh contour: Anderson–Yuval–Hamann representation of the nonequilibrium two-level system. Phys. Rev. B 76, 085342 (2007)CrossRefADSGoogle Scholar
  18. 18.
    Gutman, D.B., Gefen, Y., Mirlin, A.D.: Nonequilibrium Luttinger liquid: zero-bias anomaly and dephasing. Phys. Rev. Lett. 101, 126802 (2008)CrossRefADSGoogle Scholar
  19. 19.
    Neder, I., Marquardt, F.: Coherence oscillations in dephasing by non-Gaussian shot noise. New J. Phys. 9, 112 (2007)CrossRefADSGoogle Scholar
  20. 20.
    Gutman, D.B., Gefen, Y., Mirlin, A.D.: Nonequilibrium zero-bias anomaly in disordered metals. Phys. Rev. Lett. 100, 086801 (2008)CrossRefADSGoogle Scholar
  21. 21.
    König, J., Schoeller, H.: Strong tunneling in the single-electron box. Phys. Rev. Lett. 81, 3511 (1998)CrossRefADSGoogle Scholar
  22. 22.
    Göppert, G., Grabert, H., Prokof’ev, N.V., Svistunov, B.: Effect of tunneling conductance on the coulomb staircase. Phys. Rev. Lett. 81, 2324 (1998)CrossRefADSGoogle Scholar
  23. 23.
    Schön, G., Zaikin, A.D.: Quantum coherent effects, phase transitions, and the dissipative dynamics of ultra small tunnel junctions. Phys. Rep. 198, 237 (1990)CrossRefADSGoogle Scholar
  24. 24.
    Pothier, H., Guéron, S., Birge, N.O., Esteve, D., Devoret, M.H.: Energy distribution function of quasiparticles in mesoscopic wires. Phys. Rev. Lett. 79, 3490 (1997)CrossRefADSGoogle Scholar
  25. 25.
    Anthore, A., Pierre, F., Pothier, H., Esteve, D.: Magnetic-field-dependent quasiparticle energy relaxation in mesoscopic wires. Phys. Rev. Lett. 90, 076806 (2003)CrossRefADSGoogle Scholar
  26. 26.
    Kamenev, A., Gefen, Y.: Zero-bias anomaly in finite-size systems. Phys. Rev. B 54, 5428 (1996)CrossRefADSGoogle Scholar
  27. 27.
    Sedlmayr, N., Yurkevich, I.V., Lerner, I.V.: Tunnelling density of states at Coulomb-blockade peaks. Europhys. Lett. 76, 109 (2006)CrossRefADSGoogle Scholar
  28. 28.
    Nazarov, Yu.V.: Coulomb blockade without tunnel junctions. Phys. Rev. Lett. 82, 1245 (1999)CrossRefADSGoogle Scholar
  29. 29.
    Golubev, D.S., Zaikin, A.D.: Coulomb interaction and quantum transport through a coherent scatterer. Phys. Rev. Lett. 86, 4887 (2001)CrossRefADSGoogle Scholar
  30. 30.
    Golubev, D.S., Zaikin, A.D.: Electron transport through interacting quantum dots in the metallic regime. Phys. Rev. B 69, 075318 (2004)CrossRefADSGoogle Scholar
  31. 31.
    Blanter, Ya.M., Büttiker, M.: Shot noise in mesoscopic conductors. Phys. Rep. 336, 1 (2000)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität zu KölnKölnGermany
  2. 2.Institut für Theoretische PhysikHeinrich-Heine-UniversitätDüsseldorfGermany

Personalised recommendations