Skip to main content

Nonequilibrium Transport and Dephasing in Coulomb-Blockaded Quantum Dots

  • Chapter
  • First Online:
Modern Theories of Many-Particle Systems in Condensed Matter Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 843))

  • 3680 Accesses

Abstract

We provide an introduction to the nonequilibrium physics encountered in quantum dots. A brief summary of the relevant Coulomb blockade physics and a concise account of the Keldysh functional integral method is followed by a derivation of the Keldysh Ambegaokar-Eckern-Schön action, which represents a prototypical model for charge transport through quantum dots. We show that the nonequilibrium current fluctuations cause a dephasing that can be probed via the tunneling density of states. We provide analytical and numerical estimates for the corresponding dephasing rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The time-ordering operator is defined as \({\mathcal T} [A(t_1) B(t_2)]= \Uptheta(t_1-t_2) A(t_1) B(t_2) + \Uptheta(t_2-t_1) B(t_2) A(t_1).\)

  2. 2.

    The value of \(\Uptheta(0)\) follows from the discrete version (finite N). Consistent results follow, e.g., with \(\Uptheta(0)=1/2.\)

  3. 3.

    We can extend the lower limit for the integral to \(-\infty,\) since we could have started with the interval \([-t_f/2,t_f/2].\)

References

  1. Nazarov, Y.V., Blanter, Y.M.: Quantum Transport: Introduction to Nanoscience. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  2. Esposito, M., Harbola, U., Mukamel, S.: Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81, 1665 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Weiss, S., Eckel, J., Thorwart, M., Egger, R.: Iterative real-time path integral approach to nonequilibrium quantum transport. Phys. Rev. B 77, 195316 (2008)

    Article  ADS  Google Scholar 

  4. Anders, F.B.: Steady-state currents through nanodevices: a scattering-states numerical renormalization-group approach to open quantum systems. Phys. Rev. Lett. 101, 066804 (2008)

    Article  ADS  Google Scholar 

  5. Boulat, E., Saleur, H., Schmitteckert, P.: Twofold advance in the theoretical understanding of far-from-equilibrium properties of interacting nanostructures. Phys. Rev. Lett. 101, 140601 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. Metha, P., Andrei, N.: Nonequilibrium transport in quantum impurity models: the Bethe ansatz for open systems. Phys. Rev. Lett. 96, 216802 (2006)

    Article  ADS  Google Scholar 

  7. Alhassid, Y.: The statistical theory of quantum dots. Rev. Mod. Phys. 72, 895 (2000)

    Article  ADS  Google Scholar 

  8. Aleiner, I.L., Brouwer, P.W., Glazman, L.I.: Quantum effects in Coulomb blockade. Phys. Rep. 358, 309 (2002)

    Article  ADS  Google Scholar 

  9. Kamenev, A., Levchenko, A.: Keldysh technique and non-linear \(\sigma\)-model: basic principles and applications. Adv. Phys. 58, 197 (2009)

    Article  ADS  Google Scholar 

  10. Kamenev, A., Andreev, A.: Electron–electron interactions in disordered metals: Keldysh formalism. Phys. Rev. B 60, 2218 (1999)

    Article  ADS  Google Scholar 

  11. Altland, A., Simons, B.D.: Condensed Matter Field Theory, 2nd edn. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  12. Altland, A., Egger, R.: Nonequilibrium dephasing in coulomb blockaded quantum dots. Phys. Rev. Lett. 102, 026805 (2009)

    Article  ADS  Google Scholar 

  13. Kaminski, A., Nazarov, Yu.V., Glazman, L.I.: Suppression of the Kondo effect in a quantum dot by external irradiation. Phys. Rev. Lett. 83, 384 (1999)

    Article  ADS  Google Scholar 

  14. Rosch, A., Paaske, J., Kroha, J., Wölfle, P.: Nonequilibrium transport through a Kondo dot in a magnetic field: perturbation theory and poor man’s scaling. Phys. Rev. Lett. 90, 076804 (2003)

    Article  ADS  Google Scholar 

  15. Kehrein, S.: Scaling and decoherence in the nonequilibrium Kondo model. Phys. Rev. Lett. 95, 056602 (2005)

    Article  ADS  Google Scholar 

  16. Muzykantskii, B., d’Ambrumenil, N., Braunecker, B.: Fermi-edge singularity in a nonequilibrium system. Phys. Rev. Lett. 91, 266602 (2003)

    Article  ADS  Google Scholar 

  17. Mitra, A., Millis, A.J.: Coulomb gas on the Keldysh contour: Anderson–Yuval–Hamann representation of the nonequilibrium two-level system. Phys. Rev. B 76, 085342 (2007)

    Article  ADS  Google Scholar 

  18. Gutman, D.B., Gefen, Y., Mirlin, A.D.: Nonequilibrium Luttinger liquid: zero-bias anomaly and dephasing. Phys. Rev. Lett. 101, 126802 (2008)

    Article  ADS  Google Scholar 

  19. Neder, I., Marquardt, F.: Coherence oscillations in dephasing by non-Gaussian shot noise. New J. Phys. 9, 112 (2007)

    Article  ADS  Google Scholar 

  20. Gutman, D.B., Gefen, Y., Mirlin, A.D.: Nonequilibrium zero-bias anomaly in disordered metals. Phys. Rev. Lett. 100, 086801 (2008)

    Article  ADS  Google Scholar 

  21. König, J., Schoeller, H.: Strong tunneling in the single-electron box. Phys. Rev. Lett. 81, 3511 (1998)

    Article  ADS  Google Scholar 

  22. Göppert, G., Grabert, H., Prokof’ev, N.V., Svistunov, B.: Effect of tunneling conductance on the coulomb staircase. Phys. Rev. Lett. 81, 2324 (1998)

    Article  ADS  Google Scholar 

  23. Schön, G., Zaikin, A.D.: Quantum coherent effects, phase transitions, and the dissipative dynamics of ultra small tunnel junctions. Phys. Rep. 198, 237 (1990)

    Article  ADS  Google Scholar 

  24. Pothier, H., Guéron, S., Birge, N.O., Esteve, D., Devoret, M.H.: Energy distribution function of quasiparticles in mesoscopic wires. Phys. Rev. Lett. 79, 3490 (1997)

    Article  ADS  Google Scholar 

  25. Anthore, A., Pierre, F., Pothier, H., Esteve, D.: Magnetic-field-dependent quasiparticle energy relaxation in mesoscopic wires. Phys. Rev. Lett. 90, 076806 (2003)

    Article  ADS  Google Scholar 

  26. Kamenev, A., Gefen, Y.: Zero-bias anomaly in finite-size systems. Phys. Rev. B 54, 5428 (1996)

    Article  ADS  Google Scholar 

  27. Sedlmayr, N., Yurkevich, I.V., Lerner, I.V.: Tunnelling density of states at Coulomb-blockade peaks. Europhys. Lett. 76, 109 (2006)

    Article  ADS  Google Scholar 

  28. Nazarov, Yu.V.: Coulomb blockade without tunnel junctions. Phys. Rev. Lett. 82, 1245 (1999)

    Article  ADS  Google Scholar 

  29. Golubev, D.S., Zaikin, A.D.: Coulomb interaction and quantum transport through a coherent scatterer. Phys. Rev. Lett. 86, 4887 (2001)

    Article  ADS  Google Scholar 

  30. Golubev, D.S., Zaikin, A.D.: Electron transport through interacting quantum dots in the metallic regime. Phys. Rev. B 69, 075318 (2004)

    Article  ADS  Google Scholar 

  31. Blanter, Ya.M., Büttiker, M.: Shot noise in mesoscopic conductors. Phys. Rep. 336, 1 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge support by the SFB Transregio 12 by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Altland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Altland, A., Egger, R. (2012). Nonequilibrium Transport and Dephasing in Coulomb-Blockaded Quantum Dots. In: Cabra, D., Honecker, A., Pujol, P. (eds) Modern Theories of Many-Particle Systems in Condensed Matter Physics. Lecture Notes in Physics, vol 843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10449-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10449-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10448-0

  • Online ISBN: 978-3-642-10449-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics