Selected Topics in Graphene Physics

  • Antonio H. Castro NetoEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 843)


Graphene research is currently one of the largest fields in condensed matter. Due to its unusual electronic spectrum with Dirac-like quasiparticles, and the fact that it is a unique example of a metallic membrane, graphene has properties that have no match in standard solid-state textbooks. In these lecture notes, I discuss some of these properties that are not covered in detail in recent reviews (Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109). We study the particular aspects of the physics/chemistry of carbon that influence the properties of graphene; the basic features of graphene’s band structure including the \(\pi\) and \(\sigma\) bands; the phonon spectra in free floating graphene; the effects of a substrate on the structural properties of graphene; and the effect of deformations in the propagation of electrons. The objective of these notes is not to provide an unabridged theoretical description of graphene but to point out some of the peculiar aspects of this material.


Graphene Sheet Flexural Mode Time Reversal Symmetry Dirac Particle Hybridization Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



It is a pleasure to acknowledge countless conversations with Eva Andrei, Misha Fogler, Andre Geim, Francisco Guinea, Silvia Kusminskiy, Valeri Kotov, Alessandra Lanzara, Caio Lewenkopf, Johan Nilsson, Kostya Novoselov, Eduardo Mucciolo, Vitor Pereira, Nuno Peres, Marcos Pimenta, Tatiana Rappoport, João Lopes dos Santos, and Bruno Uchoa. This work was possible due to the financial support of a Department of Energy grant DE-FG02-08ER46512 and the Office of Naval research grant MURI N00014-09-1-1063.


  1. 1.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 22, 666 (2004)CrossRefADSGoogle Scholar
  2. 2.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mat. 6, 183 (2007)CrossRefGoogle Scholar
  3. 3.
    Shankar, R.: Renormalization group approach to interacting fermions. Rev. Mod. Phys. 66, 129 (1994)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Baym, G., Pethick, C.: Landau Fermi-Liquid Theory. Wiley, New York (1991)CrossRefGoogle Scholar
  5. 5.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R.: Drawing conclusions from graphene. Phys. World 19, 33 (2006)Google Scholar
  6. 6.
    Gonzalez, J., Guinea, F., Vozmediano, M.A.H.: Non-Fermi liquid behavior of electrons in the half-filled honeycomb lattice: a renormalization group approach. Nucl. Phys. B 424, 595 (1994)CrossRefADSGoogle Scholar
  7. 7.
    Baym, G., Chin, S.A.: Landau theory of relativistic Fermi liquids. Nucl. Phys. A 262, 527 (1976)CrossRefADSGoogle Scholar
  8. 8.
    Slater, J.C., Koster, G.F.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498 (1954)CrossRefzbMATHADSGoogle Scholar
  9. 9.
    Gordon, B.: Lectures on Quantum Mechanics. Addison-Wesley, Reading, MA (1990)Google Scholar
  10. 10.
    Pauling, L.: The Nature of the Chemical Bond. Cornell University Press, Ithaca (1960)Google Scholar
  11. 11.
    Castro Neto, A.H., Guinea, F.: Impurity induced spin-orbit coupling in graphene. Phys. Rev. Lett. 103, 026804 (2009)CrossRefADSGoogle Scholar
  12. 12.
    Harrison, W.A.: Elementary Electronic Structure. World Scientific, Singapore (2005)Google Scholar
  13. 13.
    Painter, G.S., Ellis, D.E.: Electronic structure and optical properties of graphite from a variational approach. Phys. Rev. B 1, 4747 (1970)CrossRefADSGoogle Scholar
  14. 14.
    Hohenberg, P.C.: Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383 (1967)CrossRefADSGoogle Scholar
  15. 15.
    Mermin, N.D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133 (1966)CrossRefADSGoogle Scholar
  16. 16.
    Chaikin, P., Lubensky, T.C.: Introduction to Condensed Matter Physics. Cambridge University Press, Cambridge (1995)Google Scholar
  17. 17.
    Swain, P.S., Andelman, D.: The influence of substrate structure on membrane adhesion. Langmuir 15, 8902 (1999)CrossRefGoogle Scholar
  18. 18.
    Kim, E.-A, Castro Neto, A.H.: Graphene as an electronic membrane. Europhys. Lett. 84, 57007 (2008)CrossRefADSGoogle Scholar
  19. 19.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The Electronic Properties of Graphene. Rev. Mod. Phys. 81, 109 (2009)CrossRefADSGoogle Scholar
  20. 20.
    Pereira, V.M., Castro Neto, A.H.: All-graphene integrated circuits via strain engineering. Phys. Rev. Lett. 103, 046801 (2009)CrossRefADSGoogle Scholar
  21. 21.
    Guinea, F., Katsnelson, M.I., Geim, A.K.: Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6, 30 (2010)CrossRefGoogle Scholar
  22. 22.
    Tománek, D.: Mesoscopic origami with graphite: scrolls, nanotubes, peapods. Phys. B 323, 86 (2002)CrossRefADSGoogle Scholar
  23. 23.
    Braga, S.F., Coluci, V.R., Legoas, S.B., Giro, R., Galvão, D.S., Baughman, R.H.: Structure and dynamics of carbon nanoscrolls. Nano Lett. 4, 881 (2004)CrossRefADSGoogle Scholar
  24. 24.
    Müller, J.E.: Effect of a nonuniform magnetic field on a two-dimensional electron gas in the ballistic regime. Phys. Rev. Lett. 68, 385 (1992)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsBoston UniversityBostonUSA

Personalised recommendations