Advertisement

Electronic Liquid Crystal Phases in Strongly Correlated Systems

  • Eduardo FradkinEmail author
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 843)

Abstract

I discuss the electronic liquid crystal (ELC) phases in correlated electronic systems, what these phases are and in what context they arise. I will go over the strongest experimental evidence for these phases in a variety of systems: the two-dimensional electron gas (2DEG) in magnetic fields, the bilayer material \(\hbox{Sr}_{3}\hbox{Ru}_{2}\hbox{O}_{7}\) (also in magnetic fields), and a set of phenomena in the cuprate superconductors (and more recently in the pnictide materials) that can be most simply understood in terms of ELC phases. Finally we will go over the theory of these phases, focusing on effective field theory descriptions and some of the known mechanisms that may give rise to these phases in specific models.

Keywords

Quantum Phase Transition Charge Density Wave Nematic Phase Stripe Phase Nematic Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I am deeply indebted to Steve Kivelson with whom we developed many of the ideas that are presented here. Many of these results were obtained also in collaboration with my former students Michael Lawler and Kai Sun, as well as to John Tranquada, Vadim Oganesyan, Erez Berg, Daniel Barci, Congjun Wu, Benjamin Fregoso, Siddhartha Lal and Akbar Jaefari, and many other collaborators. I would like to thank Daniel Cabra, Andreas Honecker and Pierre Pujol for inviting me to this very stimulating Les Houches Summer School on “Modern theories of correlated electron systems” (Les Houches, May 2009). This work was supported in part by the National Science Foundation, under grant DMR 0758462 at the University of Illinois, and by the Office of Science, U.S. Department of Energy, under Contracts DE-FG02-91ER45439 and DE-FG02-07ER46453 through the Frederick Seitz Materials Research Laboratory of the University of Illinois.

References

  1. 1.
    Kivelson, S.A., Fradkin, E., Emery, V.J.: Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550 (1998)ADSGoogle Scholar
  2. 2.
    de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals. Oxford Science Publications/ Clarendon Press, Oxford, UK (1993)Google Scholar
  3. 3.
    Chaikin, P.M., Lubensky, T.C.: Principles of Condensed Matter Physics. Cambridge University Press, Cambridge, UK (1995)Google Scholar
  4. 4.
    Kivelson, S.A., Fradkin, E., Oganesyan, V., Bindloss, I., Tranquada, J., Kapitulnik, A., Howald, C.: How to detect fluctuating stripes in high tempertature superconductors. Rev. Mod. Phys. 75, 1201 (2003)ADSGoogle Scholar
  5. 5.
    Berg, E., Fradkin, E., Kim, E.-A., Kivelson, S., Oganesyan, V., Tranquada, J.M., Zhang, S.: Dynamical layer decoupling in a stripe-ordered high \(T_c\) superconductor. Phys. Rev. Lett. 99, 127003 (2007)ADSGoogle Scholar
  6. 6.
    Berg, E., Chen, C.-C., Kivelson, S.A.: Stability of nodal quasiparticles in superconductors with coexisting orders. Phys. Rev. Lett. 100, 027003 (2008)ADSGoogle Scholar
  7. 7.
    Fulde, P., Ferrell, R.A.: Superconductivity in a strong spin-exchange field. Phys. Rev. 135, A550 (1964)ADSGoogle Scholar
  8. 8.
    Larkin, A.I., Ovchinnikov, Y.N.: Nonuniform state of superconductors. Zh. Eksp. Teor. Fiz. 47, 1136 (1964). (Sov. Phys. JETP. 20, 762 (1965))Google Scholar
  9. 9.
    Fradkin, E., Kivelson, S.A., Manousakis, E., Nho, K.: Nematic phase of the two-dimensional electron gas in a magnetic field. Phys. Rev. Lett. 84, 1982 (2000)ADSGoogle Scholar
  10. 10.
    Cooper, K.B., Lilly, M.P., Eisenstein, J.P., Pfeiffer, L.N., West, K.W.: Onset of anisotropic transport of two-dimensional electrons in high Landau levels: possible isotropic-to-nematic liquid-crystal phase transition. Phys. Rev. B 65, 241313 (2002)ADSGoogle Scholar
  11. 11.
    Ando, Y., Segawa, K., Komiya, S., Lavrov, A.N.: Electrical resistivity anisotropy from self-organized one-dimensionality in high-temperature superconductors. Phys. Rev. Lett. 88, 137005 (2002)ADSGoogle Scholar
  12. 12.
    Borzi, R.A., Grigera, S.A., Farrell, J., Perry, R.S., Lister, S.J.S., Lee, S.L., Tennant, D.A., Maeno, Y., Mackenzie, A.P.: Formation of a nematic fluid at high fields in \(\hbox{Sr}_{3}\hbox{Ru}_{2}\hbox{O}_{7}\). Science 315, 214 (2007)ADSGoogle Scholar
  13. 13.
    Hinkov, V., Haug, D., Fauqué, B., Bourges, P., Sidis, Y., Ivanov, A., Bernhard, C., Lin, C.T., Keimer, B.: Electronic liquid crystal state in superconducting \(\hbox{YBa}_2\hbox{Cu}_3\hbox{O}_{6.45}\). Science 319, 597 (2008)Google Scholar
  14. 14.
    Sun, K., Fradkin, E.: Time-reversal symmetry breaking and spontaneous anomalous Hall effect in Fermi fluids. Phys. Rev. B 78, 245122 (2008)ADSGoogle Scholar
  15. 15.
    Varma, C.M.: A theory of the pseudogap state of the cuprates. Philos. Mag. 85, 1657 (2005)ADSGoogle Scholar
  16. 16.
    Wu, C., Zhang, S.-C.: Dynamic generation of spin-orbit coupling. Phys. Rev. Lett. 93, 036403 (2004)ADSGoogle Scholar
  17. 17.
    Wu, C.J., Sun, K., Fradkin, E., Zhang, S.-C.: Fermi liquid instabilities in the spin channel. Phys. Rev. B 75, 115103 (2007)ADSGoogle Scholar
  18. 18.
    Anderson, P.W.: The resonating valence bond state of \(\hbox{La}_2\hbox{CuO}_4\) and superconductivity. Science 235, 1196 (1987)ADSGoogle Scholar
  19. 19.
    Emery, V.J., Kivelson, S.A., Lin, H.Q.: Phase separation in the t-J model. Phys. Rev. Lett. 64, 475 (1990)ADSGoogle Scholar
  20. 20.
    Dagotto, E.: Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763 (1994)ADSGoogle Scholar
  21. 21.
    Emery, V.J., Kivelson, S.A.: Frustrated electronic phase separation and high-temperature superconductors. Physica C 209, 597 (1993)ADSGoogle Scholar
  22. 22.
    Seul, M., Andelman, D.: Domain shapes and patterns: the phenomenology of modulated phases. Science 267, 476 (1995)ADSGoogle Scholar
  23. 23.
    Lorenz, C.P., Ravenhall, D.G., Pethick, C.J.: Neutron star crusts. Phys. Rev. Lett. 70, 379 (1993)ADSGoogle Scholar
  24. 24.
    Fradkin, E., Kivelson, S.A., Lawler, M.J., Eisenstein, J.P., Mackenzie, A.P.: Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 71 (2010)Google Scholar
  25. 25.
    Lilly, M.P., Cooper, K.B., Eisenstein, J.P., Pfeiffer, L.N., West, K.W.: Evidence for an anisotropic state of two-dimensional electrons in high Landau levels. Phys. Rev. Lett. 82, 394 (1999)ADSGoogle Scholar
  26. 26.
    Lilly, M.P., Cooper, K.B., Eisenstein, J.P., Pfeiffer, L.N., West, K.W.: Anisotropic states of two-dimensional electron systems in high Landau levels: effect of an in-plane magnetic field. Phys. Rev. Lett. 83, 824 (1999)ADSGoogle Scholar
  27. 27.
    Du, R.R., Tsui, D.C., Störmer, H.L., Pfeiffer, L.N., Baldwin, K.W., West, K.W.: Strongly anisotropic transport in higher two-dimensional Landau levels. Solid State Comm. 109, 389 (1999)ADSGoogle Scholar
  28. 28.
    Pan, W., Du, R.R., Störmer, H.L., Tsui, D.C., Pfeiffer, L.N., Baldwin, K.W., West, K.W.: Strongly anisotropic electronic transport at Landau level filling factor \(\nu = 9/2\) and \(\nu=5/2\) under tilted magnetic field. Phys. Rev. Lett. 83, 820 (1999)ADSGoogle Scholar
  29. 29.
    Koulakov, A.A., Fogler, M.M., Shklovskii, B.I.: Charge density wave in two-dimensional electron liquid in weak magnetic field. Phys. Rev. Lett. 76, 499 (1996)ADSGoogle Scholar
  30. 30.
    Moessner, R., Chalker, J.T.: Exact results for interacting electrons in high Landau levels. Phys. Rev. B 54, 5006 (1996)ADSGoogle Scholar
  31. 31.
    Fradkin, E., Kivelson, S.A.: Liquid crystal phases of quantum Hall systems. Phys. Rev. B 59, 8065 (1999)ADSGoogle Scholar
  32. 32.
    MacDonald, A.H., Fisher, M.P.A.: Quantum theory of quantum Hall smectics. Phys. Rev. B 61, 5724 (2000)ADSGoogle Scholar
  33. 33.
    Barci, D.G., Fradkin, E., Kivelson, S.A., Oganesyan, V.: Theory of the quantum Hall smectic phase. I. Low-energy properties of the quantum Hall smectic fixed point. Phys. Rev. B 65, 245319 (2002)ADSGoogle Scholar
  34. 34.
    Cooper, K.B., Lilly, M.P., Eisenstein, J.P., Jungwirth, T., Pfeiffer, L.N., West, K.W.: An investigation of orientational symmetry-breaking mechanisms in high Landau levels. Sol. State Commun. 119, 89 (2001)ADSGoogle Scholar
  35. 35.
    Cooper, K.B., Eisenstein, J.P., Pfeiffer, L.N., West, K.W.: Observation of narrow-band noise accompanying the breakdown of insulating states in high Landau levels. Phys. Rev. Lett. 90, 226803 (2003)ADSGoogle Scholar
  36. 36.
    Wexler, C., Dorsey, A.T.: Disclination unbinding transition in quantum Hall liquid crystals. Phys. Rev. B 64, 115312 (2001)ADSGoogle Scholar
  37. 37.
    Radzihovsky, L., Dorsey, A.T.: Theory of quantum Hall nematics. Phys. Rev. Lett. 88, 216802 (2002)ADSGoogle Scholar
  38. 38.
    Doan, Q.M., Manousakis, E.: Quantum nematic as ground state of a two-dimensional electron gas in a magnetic field. Phys. Rev. B 75, 195433 (2007)ADSGoogle Scholar
  39. 39.
    Oganesyan, V., Kivelson, S.A., Fradkin, E.: Quantum theory of a nematic Fermi fluid. Phys. Rev. B 64, 195109 (2001)ADSGoogle Scholar
  40. 40.
    Grigera, S.A., Gegenwart, P., Borzi, R.A., Weickert, F., Schofield, A.J., Perry, R.S., Tayama, T., Sakakibara, T., Maeno, Y., Green, A.G. et al.: Disorder-sensitive phase formation linked to metamagnetic quantum criticality. Science 306, 1154 (2004)ADSGoogle Scholar
  41. 41.
    Fradkin, E., Kivelson, S.A., Oganesyan, V.: Discovery of a nematic electron fluid in a transition metal oxide. Science 315, 196 (2007)Google Scholar
  42. 42.
    Grigera, S.A., Perry, R.S., Schofield, A.J., Chiao, M., Julian, S.R., Lonzarich, G.G., Ikeda, S.I., Maeno, Y., Millis, A.J., Mackenzie, A.P.: Magnetic field-tuned quantum criticality in the metallic ruthenate \(\hbox{Sr}_{3}\hbox{Ru}_{2}\hbox{O}_{7}\). Science 294, 329 (2001)ADSGoogle Scholar
  43. 43.
    Millis, A.J., Schofield, A.J., Lonzarich, G.G., Grigera, S.A.: Metamagnetic quantum criticality. Phys. Rev. Lett. 88, 217204 (2002)ADSGoogle Scholar
  44. 44.
    Perry, R.S., Kitagawa, K., Grigera, S.A., Borzi, R.A., Mackenzie, A.P., Ishida, K., Maeno, Y.: Multiple first-order metamagnetic transitions and quantum oscillations in ultrapure \(\hbox{Sr}_{3}\hbox{Ru}_{2}\hbox{O}_{7}\). Phys. Rev. Lett. 92, 166602 (2004)ADSGoogle Scholar
  45. 45.
    Green, A.G., Grigera, S.A., Borzi, R.A., Mackenzie, A.P., Perry, R.S., Simons, B.D.: Phase bifurcation and quantum fluctuations in \(\hbox{Sr}_{3}\hbox{Ru}_{2}\hbox{O}_{7}\). Phys. Rev. Lett. 95, 086402 (2005)ADSGoogle Scholar
  46. 46.
    Jamei, R., Kivelson. Spivak, B.: Universal aspects of Coulomb-frustrated phase separation. Phys. Rev. Lett. 94, 056805 (2005)ADSGoogle Scholar
  47. 47.
    Lorenzana, J., Castellani, C., Di Castro, C.: Mesoscopic frustrated phase separation in electronic systems. Euro. Phys. Lett. 57, 704 (2002)ADSGoogle Scholar
  48. 48.
    Kivelson, S.A., Fradkin, E.: In: Schrieffer, J.R., Brooks, J. (eds.) Handbook of High Temperature Superconductivity, pp. 569–595. Springer-Verlag, New York (2007)Google Scholar
  49. 49.
    Chakravarty, S., Laughlin, R.B., Morr, D.K., Nayak, C.: Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001)ADSGoogle Scholar
  50. 50.
    Fujita, M., Goka, H., Yamada, K., Tranquada, J.M., Regnault, L.P.: Stripe order depinning and fluctuations in \(\hbox{La}_{1.875}\hbox{Ba}_{0.125}\hbox{CuO}_4\) and \(\hbox{La}_{1.875}\hbox{Ba}_{0.075}\hbox{Sr}_{0.050}\hbox{CuO}_4\). Phys. Rev. B 70, 104517 (2004)ADSGoogle Scholar
  51. 51.
    Abbamonte, P., Rusydi, A., Smadici, S., Gu, G.D., Sawatzky, G.A., Feng, D.L.: Spatially modulated ‘Mottness’ in \(\hbox{La}_{2-x}\hbox{Ba}_{x}\hbox{CuO}_4\). Nature Phys. 1, 155 (2005)ADSGoogle Scholar
  52. 52.
    Tranquada, J.M.: In: Schrieffer, J.R., Brooks, J. (ed.) Treatise of High Temperature Superconductivity, pp. 257–298. Springer-Verlag, New York (2007)Google Scholar
  53. 53.
    Tranquada, J.M., Sternlieb, B.J., Axe, J.D., Nakamura, Y., Uchida, S.: Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561 (1995)ADSGoogle Scholar
  54. 54.
    Tranquada, J.M., Woo, H., Perring, T.G., Goka, H., Gu, G.D., Xu, G., Fujita, M., Yamada, K.: Quantum magnetic excitations from stripes in copper-oxide superconductors. Nature 429, 534 (2004)ADSGoogle Scholar
  55. 55.
    Haug, D., Hinkov, V., Suchaneck, A., Inosov, D.S., Christensen, N.B., Niedermayer, C., Bourges, P., Sidis, Y., Park, J.T., Ivanov, A. et al.: Magnetic-field-enhanced incommensurate magnetic order in the underdoped high-temperature superconductor \(\hbox{YBa}_{2}\hbox{Cu}_{3}\hbox{O}_{6.45}\). Phys. Rev. Lett. 103, 017001 (2009)ADSGoogle Scholar
  56. 56.
    Hinkov, V., Bourges, P., Pailhés, S., Sidis, Y., Ivanov, A., Frost, C.D., Perring, T.G., Lin, C.T., Chen, D.P., Keimer, B.: Spin dynamics in the pseudogap state of a high-temperature superconductor. Nature Phys. 3, 780 (2007)ADSGoogle Scholar
  57. 57.
    Hinkov, V., Bourges, P., Pailhés, S., Sidis, Y., Ivanov, A., Lin, C., Chen, D., Keimer, B.: In-plane anisotropy of spin excitations in the normal and superconducting states of underdoped \(\hbox{YBa}_{2}\hbox{Cu}_{3}\hbox{O}_{6+x}\). Nature Phys. 3, 780 (2007)ADSGoogle Scholar
  58. 58.
    Mook, H.A., Dai, P., Dog˘an, F., Hunt, R.D.: One-dimensional nature of the magnetic fluctuations in \(\hbox{YBa}_2\hbox{Cu}_{3}\hbox{O}_{6.6}\). Nature 404, 729 (2000)ADSGoogle Scholar
  59. 59.
    Stock, C., Buyers, W.J.L., Liang, R., Peets, D., Tun, Z., Bonn, D., Hardy, W.N., Birgeneau, R.J.: Dynamic stripes and resonance in the superconducting and normal phases of \(\hbox{YBa}_2\hbox{Cu}_3\hbox{O}_{6.5}\) ortho-II superconductor. Phys. Rev. B 69, 014502 (2004)ADSGoogle Scholar
  60. 60.
    Daou, R., Chang, J., LeBoeuf, D., Cyr-Choinière, O., Laliberté, F., Doiron-Leyraud, N., Ramshaw, B.J., Liang, R., Bonn, D.A., Hardy, W.N. et al.: Broken rotational symmetry in the pseudogap phase of a high- \(T_c\) superconductor. Nature 463, 519 (2010)ADSGoogle Scholar
  61. 61.
    Li, L., Wang, Y., Naughton, M.J., Komiya, S., Ono, S., Ando, Y., Ong, N.P.: Magnetization, nernst effect and vorticity in the cuprates. J. Magn. Magn. Mater. 310, 460 (2007)ADSGoogle Scholar
  62. 62.
    Cyr-Choinière, O., Daou, R., Laliberté, F., LeBoeuf, D., Doiron-Leyraud, N., Chang, J., Yan, J.-Q., Cheng, J.-G., Zhou, J.-S., Goodenough, J.B. et al.: Enhancement of the nernst effect by stripe order in a high- \(T_c\) superconductor. Nature 458, 743 (2009)ADSGoogle Scholar
  63. 63.
    Matsuda, M., Fujita, M., Wakimoto, S., Fernandez-Baca, J.A., Tranquada, J.M., Yamada, K.: Magnetic excitations of the diagonal incommensurate phase in lightly-doped \(\hbox{La}_{2-x}\hbox{Sr}_x\hbox{CuO}_4\). Phys. Rev. Lett. 101, 197001 (2008)ADSGoogle Scholar
  64. 64.
    Lake, B., Rønnow, H.M., Christensen, N.B., Aeppli, G., Lefmann, K., McMorrow, D.F., Vorderwisch, P., Smeibidl, P., Mangkorntong, N., Sasagawa, T., Nohara, M., Takagi, H., Mason, T.E.: Antiferromagnetic order induced by an applied magnetic field in a high temperature superconductor. Nature 415, 299 (2002)ADSGoogle Scholar
  65. 65.
    Li, Q., Hücker, M., Gu, G.D., Tsvelik, A.M., Tranquada, J.M.: Two-dimensional superconducting fluctuations in stripe-ordered \(\hbox{La}_{1.875}\hbox{Ba}_{0.125}\hbox{CuO}_4\). Phys. Rev. Lett. 99, 067001 (2007)ADSGoogle Scholar
  66. 66.
    Valla, T., Fedorov, A.V., Lee, J., Davis, J.C., Gu, G.D.: The ground state of the pseudogap in cuprate superconductors. Science 314, 1914 (2006)ADSGoogle Scholar
  67. 67.
    He, R.-H., Tanaka, K., Mo, S.-K., Sasagawa, T., Fujita, M., Adachi, T., Mannella, N., Yamada, K., Koike, Y., Hussain, Z. et al.: Energy gaps in the failed high- \(T_c\) superconductor \(\hbox{La}_{1.875}\hbox{Ba}_{0.125}\hbox{CuO}_4\). Nat. Phys. 5, 119 (2008)Google Scholar
  68. 68.
    Berg, E., Fradkin, E., Kivelson, S.A.: Charge 4e superconductivity from pair density wave order in certain high temperature superconductors. Nature Phys. 5, 830 (2009)ADSGoogle Scholar
  69. 69.
    Schafgans, A.A., LaForge, A.D., Dordevic, S.V., Qazilbash, M.M., Komiya, S., Ando, Y., Basov, D.N.: Towards two-dimensional superconductivity in \(\hbox{La}_{2-x}\hbox{Sr}_{x}\hbox{CuO}_4\) in a moderate magnetic field. Phys. Rev. Lett. 104, 157002 (2010)ADSGoogle Scholar
  70. 70.
    Kohsaka, Y., Taylor, C., Fujita, K., Schmidt, A., Lupien, C., Hanaguri, T., Azuma, M., Takano, M., Eisaki, H., Takagi, H. et al.: An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380 (2007)ADSGoogle Scholar
  71. 71.
    Howald, C., Eisaki, H., Kaneko, N., Kapitulnik, A.: Coexistence of charged stripes and superconductivity in \(\hbox{Bi}_2\hbox{Sr}_2\hbox{CaCu}_2\hbox{O}_{8+\delta}\). Proc. Natl. Acad. Sci. U.S.A. 100, 9705 (2003)ADSGoogle Scholar
  72. 72.
    Hanaguri, T., Lupien, C., Kohsaka, Y., Lee, D.H., Azuma, M., Takano, M., Takagi, H., Davis, J.C.: A ‘checkerboard’ electronic crystal state in lightly hole-doped \(\hbox{Ca}_{2-x}\hbox{Na}_x\hbox{CuO}_2\hbox{Cl}_2\). Nature 430, 1001 (2004)ADSGoogle Scholar
  73. 73.
    Vershinin, M., Misra, S., Ono, S., Abe, Y., Ando, Y., Yazdani, A.: Local ordering in the pseudogap state of the high- \(T_c\) superconductor \(\hbox{Bi}_2\hbox{Sr}_2\hbox{CaCu}_2\hbox{O}_{8+\delta}\). Science 303, 1005 (2004)Google Scholar
  74. 74.
    Lawler, M.J., Fujita, K., Lee, J.W., Schmidt, A.R., Kohsaka, Y., Kim, C.K., Eisaki, H., Uchida, S., Davis, J.C., Sethna, J.P. et al.: Electronic nematic ordering of the intra-unit-cell pseudogap states in underdoped \(\hbox{Bi}_2\hbox{Sr}_2\hbox{CaCu}_2\hbox{O}_{8+\delta}\). Nature 466, 347 (2009)ADSGoogle Scholar
  75. 75.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-based layered superconductor \(\hbox{La[O}_{1-x}\hbox{F}_x].\) FeAs (x = 0.05–0.12) with \(T_c=26\;{\hbox{K}}\). J. Am. Chem. Soc. 130, 3296 (2008)Google Scholar
  76. 76.
    Mu, G., Zhu, X., Fang, L., Shan, L., Ren, C., Wen, H.H.: Nodal gap in Fe-based layered superconductor \(\hbox{LaO}_{0.9}\hbox{F}_{0.1-\delta}\hbox{FeAs}\) probed by specific heat measurements. Chin. Phys. Lett. 25, 2221 (2008)ADSGoogle Scholar
  77. 77.
    Fang, C., Yao, H., Tsai, W.-F., Hu, J.P., Kivelson, S.A.: Theory of electron nematic order in LaOFeAs. Phys. Rev. B 77, 224509 (2008)ADSGoogle Scholar
  78. 78.
    Xu, C., Müller, M., Sachdev, S.: Ising and spin orders in Iron-based superconductors. Phys. Rev. B 78, 020501 (R) (2008)ADSGoogle Scholar
  79. 79.
    Chuang, T.-M., Allan, M., Lee, J., Xie, Y., Ni, N., Bud’ko, S., Boebinger, G.S., Canfield, P.C., Davis, J.C.: Nematic electronic structure in the ‘parent’ state of the iron-based superconductor \(\hbox{Ca(Fe}_{1-x}\hbox{Co}_x)_{2}\hbox{As}_2\). Science 327, 181 (2010)ADSGoogle Scholar
  80. 80.
    Dagotto,, E., Hotta,, T., Moreo, A.: Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1 (2001)ADSGoogle Scholar
  81. 81.
    Rübhausen, M., Yoon, S., Cooper, S.L., Kim, K.H., Cheong, S.W.: Anisotropic optical signatures of orbital and charge ordering in \(\hbox{Bi}_{1-x}\hbox{Ca}_{x}\hbox{MnO}_3\). Phys. Rev. B 62, R4782 (2000)ADSGoogle Scholar
  82. 82.
    Grüner, G.: The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129 (1988)ADSGoogle Scholar
  83. 83.
    Grüner, G.: The dynamics of spin-density-waves. Rev. Mod. Phys. 66, 1 (1994)ADSGoogle Scholar
  84. 84.
    McMillan, W.L.: Landau theory of charge density waves in transition-metal dichalcogenides. Phys. Rev. B 12, 1187 (1975)ADSGoogle Scholar
  85. 85.
    McMillan, W.L.: Theory of discommensurations and the commensurate-incommensurate charge-density-wave phase transition. Phys. Rev. B 14, 1496 (1976)ADSGoogle Scholar
  86. 86.
    Emery, V.J., Fradkin, E., Kivelson, S.A., Lubensky, T.C.: Quantum theory of the smectic metal state in stripe shases. Phys. Rev. Lett. 85, 2160 (2000)ADSGoogle Scholar
  87. 87.
    Carlson, E.W., Emery, V.J., Kivelson, S.A., Orgad, D.: In: Bennemann, K.H., Ketterson, J.B. (ed.) The Physics of Conventional and Unconventional Superconductors, vol. II, Springer-Verlag, Berlin (2004)Google Scholar
  88. 88.
    Snow, C.S., Karpus, J.F., Cooper, S.L., Kidd, T.E., Chiang, T.-C.: Quantum melting of the charge-density-wave state in 1T- \(\hbox{TiSe}_2\). Phys. Rev. Lett. 91, 136402 (2003)ADSGoogle Scholar
  89. 89.
    Morosan, E., Zandbergen, H.W., Dennis, B.S., Bos, J.W., Onose, Y., Klimczuk, T., Ramirez, A.P., Ong, N.P., Cava, R.J.: Superconductivity in \(\hbox{Cu}_x\hbox{TiSe}_2\). Nature Phys. 2, 44 (2006)Google Scholar
  90. 90.
    Barath, H., Kim, M., Karpus, J.F., Cooper, S.L., Abbamonte, P., Fradkin, E., Morosan, E., Cava, R.J.: Quantum and classical mode softening near the charge-density-wave/superconductor transition of \(\hbox{Cu}_x\hbox{TiSe}_2:\) Raman spectroscopic studies. Phys. Rev. Lett. 100, 106402 (2008)ADSGoogle Scholar
  91. 91.
    Dai, H., Chen, H., Lieber, C.M.: Weak pinning and hexatic order in a doped two-dimensional charge-density-wave system. Phys. Rev. Lett. 66, 3183 (1991)ADSGoogle Scholar
  92. 92.
    Kusmartseva, A.F., Sipos, B., Berker, H., Forró, L., Tutiš, E.: Pressure induced superconductivity in pristine 1T- \(\hbox{TiSe}_2\). Phys. Rev. Lett. 103, 236401 (2009)ADSGoogle Scholar
  93. 93.
    Brouet, V., Yang, W.L., Zhou, X.J., Hussain, Z., Ru, N., Shin, K.Y., Fisher, I.R., Shen, Z.X.: Fermi surface reconstruction in the CDW state of \(\hbox{CeTe}_3\) observed by photoemission. Phys. Rev. Lett. 93, 126405 (2004)ADSGoogle Scholar
  94. 94.
    Laverock, J., Dugdale, S.B., Major, Z., Alam, M.A., Ru, N., Fisher, I.R., Santi, G., Bruno, E.: Fermi surface nesting and charge-density wave formation in rare-earth tritellurides. Phys. Rev. B 71, 085114 (2005)ADSGoogle Scholar
  95. 95.
    Sacchetti, A., Degiorgi, L., Giamarchi, T., Ru, N., Fisher, I.R.: Chemical pressure and hidden one-dimensional behavior in rare-earth tri-telluride charge-density-wave compounds. Phys. Rev. B 74, 125115 (2006)ADSGoogle Scholar
  96. 96.
    Fang, A., Ru, N., Fisher, I.R., Kapitulnik, A.: STM studies of Tb \(\hbox{Te}_3:\) evidence for a fully incommensurate charge density wave. Phys. Rev. Lett. 99, 046401 (2007)ADSGoogle Scholar
  97. 97.
    Yao, H., Robertson, J.A., Kim, E.-A., Kivelson, S.A.: Theory of stripes in quasi-two-dimensional rare-earth tritellurides. Phys. Rev. B 74, 245126 (2006)ADSGoogle Scholar
  98. 98.
    Vojta, M.: Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity. Adv. Phys. 58, 564 (2009)Google Scholar
  99. 99.
    Brazovskii, S., Kirova, N.: Electron self-localization and superstructures in quasi one-dimensional dielectrics. Sov. Sci. Rev. A 5, 99 (1984)Google Scholar
  100. 100.
    Kivelson, S.A., Emery, V.J.: In: Bedell, K., Wang, Z., Meltzer, D.E., Balatsky, A.V., Abrahams, E. (ed.) Strongly Correlated Electron Materials: The Los Alamos Symposium 1993, pp. 619–650. Addison-Wesley, Redwood City (1994)Google Scholar
  101. 101.
    Zaanen, J., Gunnarsson, O.: Charged magnetic domain lines and the magnetism of high \(\hbox{T}_c\) oxides. Phys. Rev. B 40, 7391 (1989)ADSGoogle Scholar
  102. 102.
    Schulz, H.J.: Incommensurate antiferromagnetism in the 2-dimensional Hubbard model. Phys. Rev. Lett. 64, 1445 (1990)ADSGoogle Scholar
  103. 103.
    Poilblanc, D., Rice, T.M.: Charged solitons in the hartree–fock approximation to the large-U Hubbard model. Phys. Rev. B 39, 9749 (1989)ADSGoogle Scholar
  104. 104.
    Machida, K.: Magnetism in \(\hbox{La}_{2}\hbox{CuO}_{4}\) based compounds. Physica C 158, 192 (1989)ADSGoogle Scholar
  105. 105.
    Kato, M., Machida, K., Nakanishi, H., Fujita, M.: Soliton lattice modulation of incommensurate spin density wave in two dimensional Hubbard model —a mean field study. J. Phys. Soc. Jpn. 59, 1047 (1990)ADSGoogle Scholar
  106. 106.
    Kivelson, S.A., Emery, V.J.: Topological doping. Synth. Met. 80, 151 (1996)Google Scholar
  107. 107.
    Emery, V.J., Kivelson, S.A., Tranquada, J.M.: Stripe phases in high-temperature superconductors. Proc. Natl. Acad. Sci. USA 96, 8814 (1999)ADSGoogle Scholar
  108. 108.
    Pryadko, L.P., Kivelson, S.A., Emery, V.J., Bazaliy, Y.B., Demler, E.A.: Topological doping and the stability of stripe phases. Phys. Rev. B 60, 7541 (1999)ADSGoogle Scholar
  109. 109.
    Berg, E., Fradkin, E., Kivelson, S.A., Tranquada, J.M.: Striped superconductors: how the cuprates intertwine spin, charge and superconducting orders. New J. Phys. 11, 115004 (2009)ADSGoogle Scholar
  110. 110.
    Read, N., Sachdev, S.: Valence-bond and Spin-Peierls ground states in low-dimensional quantum antiferromagnets. Phys. Rev. Lett. 62, 1694 (1989)ADSGoogle Scholar
  111. 111.
    Vojta, M., Sachdev, S.: Charge order, superconductivity, and a global phase diagram of doped antiferromagnets. Phys. Rev. Lett. 83, 3916 (1999)ADSGoogle Scholar
  112. 112.
    Vojta, M., Zhang, Y., Sachdev, S.: Competing orders and quantum criticality in doped antiferromagnets. Phys. Rev. B 62, 6721 (2000)ADSGoogle Scholar
  113. 113.
    Kivelson, S.A., Rokhsar, D., Sethna, J.P.: Topology of the resonating valence-bond state: solitons and high \(T_c\) superconductivity. Phys. Rev. B 35, 865 (1987)Google Scholar
  114. 114.
    Capello, M., Raczkowski, M., Poilblanc, D.: Stability of RVB hole stripes in high temperature superconductors. Phys. Rev. B 77, 224502 (2008)ADSGoogle Scholar
  115. 115.
    Himeda, A., Kato, T., Ogata, M.: Stripe states with spatially oscillating d-wave superconductivity in the two-dimensional \(t-t^\prime-J\) model. Phys. Rev. Lett. 88, 117001 (2002)ADSGoogle Scholar
  116. 116.
    Yamase, H., Metzner, W.: Competition of Fermi surface symmetry breaking and superconductivity. Phys. Rev. B 75, 155117 (2007)ADSGoogle Scholar
  117. 117.
    White, S.R., Scalapino, D.J.: Ground states of the doped four-leg t-J ladder. Phys. Rev. B 55, 14701 (R) (1997)ADSGoogle Scholar
  118. 118.
    White, S.R., Scalapino, D.J.: Density matrix renormalization group study of the striped phase in the 2D t-J model. Phys. Rev. Lett. 80, 1272 (1998)ADSGoogle Scholar
  119. 119.
    White, S.R., Scalapino, D.J.: Ground-state properties of the doped three-leg t-J ladder. Phys. Rev. B 57, 3031 (1998)ADSGoogle Scholar
  120. 120.
    White, S.R., Scalapino, D.J.: Phase separation and stripe formation in the two-dimensional t-J model: a comparison of numerical results. Phys. Rev. B 61, 6320 (2000)ADSGoogle Scholar
  121. 121.
    Hager, G., Wellein, G., Jackelmann, E., Fehske, H.: Stripe formation in doped Hubbard ladders. Phys. Rev. B 71, 075108 (2005)ADSGoogle Scholar
  122. 122.
    Kivelson, S.A., Emery, V.J., Lin, H.Q.: Doped antiferromagnets in the small t limit. Phys. Rev. B 42, 6523 (1990)ADSGoogle Scholar
  123. 123.
    Emery, V.J.: Theory of high \(T_c\) superconductivity in oxides. Phys. Rev. Lett. 58, 2794 (1987)ADSGoogle Scholar
  124. 124.
    Lorenzana, J., Seibold, G.: Metallic mean-field stripes, incommensurability, and chemical potential in cuprates. Phys. Rev. Lett. 89, 136401 (2002)ADSGoogle Scholar
  125. 125.
    Granath, M., Oganesyan, V., Kivelson, S.A., Fradkin, E., Emery, V.J.: Nodal quasi-particles and coexisting orders in striped superconductors. Phys. Rev. Lett. 87, 167011 (2001)ADSGoogle Scholar
  126. 126.
    Arrigoni, E., Fradkin, E., Kivelson, S.A.: Mechanism of high temperature superconductivity in a striped Hubbard model. Phys. Rev. B. 69, 214519 (2004)ADSGoogle Scholar
  127. 127.
    Emery, V.J.: In: Devreese, J.T., Evrard, R.P., van Doren, V.E. (ed.) Highly Conducting One-Dimensional Solids, p. 327. Plenum Press, New York (1979)Google Scholar
  128. 128.
    Luther, A., Emery, V.J.: Backward scattering in the one-dimensional electron gas. Phys. Rev. Lett. 33, 589 (1974)ADSGoogle Scholar
  129. 129.
    Noack, R.M., Bulut, N., Scalapino, D.J., Zacher, M.G.: Enhanced \(\hbox{d}_{x^2-y^2}\) pairing correlations in the two-leg Hubbard ladder. Phys. Rev. B 56, 7162 (1997)ADSGoogle Scholar
  130. 130.
    Balents, L., Fisher, M.P.A.: Weak-coupling phase diagram of the two-chain Hubbard model. Phys. Rev. B 53, 12133 (1996)ADSGoogle Scholar
  131. 131.
    Lin, H.H., Balents, L., Fisher, M.P.A.: N-chain Hubbard model in weak coupling. Phys. Rev. B 56, 6569 (1997)ADSGoogle Scholar
  132. 132.
    Lin, H.H., Balents, L., Fisher, M.P.A.: Exact SO(8) symmetry in the weakly-interacting two-leg ladder. Phys. Rev. B 58, 1794 (1998)ADSGoogle Scholar
  133. 133.
    Emery, V.J., Kivelson, S.A., Zachar, O.: Classification and stability of phases of the multicomponent one-dimensional electron gas. Phys. Rev. B 59, 15641 (1999)ADSGoogle Scholar
  134. 134.
    Emery, V.J., Kivelson, S.A., Zachar, O.: Spin-gap proximity effect mechanism of high temperature superconductivity. Phys. Rev. B 56, 6120 (1997)ADSGoogle Scholar
  135. 135.
    Tsunetsugu, H., Troyer, M., Rice, T.M.: Pairing and excitation spectrum in doped t-J ladders. Phys. Rev. B 51, 16456 (1995)ADSGoogle Scholar
  136. 136.
    Vishwanath, A., Carpentier, D.: Two-dimensional anisotropic non-Fermi-liquid phase of coupled luttinger liquids. Phys. Rev. Lett. 86, 676 (2001)ADSGoogle Scholar
  137. 137.
    Fertig, H.A.: Unlocking transition for modulated surfaces and quantum Hall stripes. Phys. Rev. Lett. 82, 3693 (1999)ADSGoogle Scholar
  138. 138.
    Lawler, M.J., Fradkin, E.: Quantum Hall smectics, sliding symmetry and the renormalization group. Phys. Rev. B 70, 165310 (2004)ADSGoogle Scholar
  139. 139.
    O’Hern, C.S., Lubensky, T.C., Toner, J.: Sliding phases in XY-models, crystals, and cationic lipid-DNA complexes. Phys. Rev. Lett. 83, 2746 (1999)Google Scholar
  140. 140.
    Carlson, E.W., Orgad, D., Kivelson, S.A., Emery, V.J.: Dimensional crossover in quasi one-dimensional and high \(T_c\) superconductors. Phys. Rev. B 62, 3422 (2000)ADSGoogle Scholar
  141. 141.
    Affleck, I., Halperin, B.I.: On a renormalization group approach to dimensional crossover. J. Phys. A.: Math. Gen. 29, 2627 (1996)zbMATHADSGoogle Scholar
  142. 142.
    Lee, P.A., Nagaosa, N., Wen, X.-G.: Doping a mott insulator: physics of high temperature superconductivity. Rev. Mod. Phys. 78, 17 (2006)ADSGoogle Scholar
  143. 143.
    Berg, E., Fradkin, E., Kivelson, S.A.: Theory of the striped superconductor. Phys. Rev. B 79, 064515 (2009)ADSGoogle Scholar
  144. 144.
    Tranquada, J.M., Gu, G.D., Hücker, M., Kang, H.J., Klingerer, R., Li, Q., Wen, J.S., Xu, G.Y., Zimmermann, M.v.: Evidence for unusual superconducting correlations coexisting with stripe order in \(\hbox{La}_{1.875}\hbox{Ba}_{0.125}\hbox{CuO}_4\). Phys. Rev. B 78, 174529 (2008)ADSGoogle Scholar
  145. 145.
    Hücker, M., Zimmermann, M.V., Debessai, M., Schilling, J.S., Tranquada, J.M., Gu, G.D.: Spontaneous symmetry breaking by charge stripes in the high-pressure phase of superconducting \(\hbox{La}_{1.875}\hbox{Ba}_{0.125}\hbox{CuO}_4\). Phys. Rev. Lett. 104, 057004 (2010)ADSGoogle Scholar
  146. 146.
    Raczkowski, M., Capello, M., Poilblanc, D., Frésard, R., Oleś, A.M.: Unidirectional d-wave superconducting domains in the two-dimensional t-J model. Phys. Rev. B 76, 140505 (R) (2007)ADSGoogle Scholar
  147. 147.
    Yang, K.-Y., Chen, W.-Q., Rice, T.M., Sigrist, M., Zhang, F.-C.: Nature of stripes in the generalized t-J model applied to the cuprate superconductors. New J. Phys. 11, 055053 (2009)ADSGoogle Scholar
  148. 148.
    Loder, F., Kampf, A.P., Kopp, T.: Superconductivity with finite-momentum pairing in zero magnetic field. Phys. Rev. B 81, 020511 (2010)ADSGoogle Scholar
  149. 149.
    Chen, H.D., Vafek, O., Yazdani, A., Zhang, S.-C.: Pair density wave in the pseudogap state of high temperature superconductors. Phys. Rev. Lett. 93, 187002 (2004)ADSGoogle Scholar
  150. 150.
    Melikyan, A., Tešanović, Z.: A model of phase fluctuations in a lattice d-wave superconductor: application to the Cooper pair charge-density-wave in underdoped cuprates. Phys. Rev. B 71, 214511 (2005)ADSGoogle Scholar
  151. 151.
    Kosterlitz, J.M., Thouless, D.J.: Order metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys. 6, 1181 (1973)ADSGoogle Scholar
  152. 152.
    José, J.V., Kadanoff, L.P., Kirkpatrick, S., Nelson, D.R.: Renormalization, vortices, and symmetry-breaking perturbations in the wto-dimensional planar model. Phys. Rev. B 16, 1217 (1977)ADSGoogle Scholar
  153. 153.
    Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge, UK (1996) Chapter 8Google Scholar
  154. 154.
    Krüger, F., Scheidl, S.: Non-universal ordering of spin and charge in stripe phases. Phys. Rev. Lett. 89, 095701 (2002)ADSGoogle Scholar
  155. 155.
    Podolsky, D., Chandrasekharan, S., Vishwanath, A.: Phase transitions of S  =  1 spinor condensates in an optical lattice. Phys. Rev. B 80, 214513 (2009)ADSGoogle Scholar
  156. 156.
    Radzihovsky, L., Vishwanath, A.: Quantum liquid crystals in imbalanced Fermi gas: fluctuations and fractional vortices in Larkin-Ovchinnikov states. Phys. Rev. Lett. 103, 010404 (2009)ADSGoogle Scholar
  157. 157.
    Baym, G., Pethick, C.: Landau Fermi Liquid Theory. Wiley , New York, NY (1991)Google Scholar
  158. 158.
    Polchinski, J.: In: Harvey, J., Polchinski, J. (ed.) Recent directions in particle theory: from superstrings and black holes to the Standard Model (TASI - 92). Theoretical Advanced Study Institute in High Elementary Particle Physics (TASI 92), Boulder, Colorado, USA, 1–26 Jun, 1992. (World Scientific, Singapore, 1993).Google Scholar
  159. 159.
    Shankar, R.: Renormalization-group approach to interacting fermions. Rev. Mod. Phys. 66, 129 (1994)ADSMathSciNetGoogle Scholar
  160. 160.
    Pomeranchuk, I.I.: On the stability of a Fermi liquid. Sov. Phys. JETP 8, 361 (1958)zbMATHGoogle Scholar
  161. 161.
    Kee, H.-Y., Kim, E.H., Chung, C.-H.: Signatures of an electronic nematic phase at the isotropic-nematic phase transition. Phys. Rev. B 68, 245109 (2003)ADSGoogle Scholar
  162. 162.
    Khavkine, I., Chung, C.-H., Oganesyan, V., Kee, H.-Y.: Formation of an electronic nematic phase in interacting fermion systems. Phys. Rev. B 70, 155110 (2004)ADSGoogle Scholar
  163. 163.
    Yamase, H., Oganesyan, V., Metzner, W.: Mean-field theory for symmetry-breaking Fermi surface deformations on a square lattice. Phys. Rev. B 72, 035114 (2005)ADSGoogle Scholar
  164. 164.
    Halboth, C.J., Metzner, W.: D-wave superconductivity and pomeranchuk instability in the two-dimensional Hubbard model. Phys. Rev. Lett. 85, 5162 (2000)ADSGoogle Scholar
  165. 165.
    Metzner, W., Rohe, D., Andergassen, S.: Soft Fermi surfaces and breakdown of Fermi-liquid behavior. Phys. Rev. Lett. 91, 066402 (2003)ADSGoogle Scholar
  166. 166.
    Neumayr, A., Metzner, W.: Renormalized perturbation theory for Fermi systems: Fermi surface deformation and superconductivity in the two-dimensional Hubbard model. Phys. Rev. B 67, 035112 (2003)ADSGoogle Scholar
  167. 167.
    Dell’Anna, L., Metzner, W.: Fermi surface fluctuations and single electron excitations near pomeranchuk instability in two dimensions. Phys. Rev. B 73, 45127 (2006)Google Scholar
  168. 168.
    Honerkamp, C., Salmhofer, M., Furukawa, N., Rice, T.M.: Breakdown of the Landau-Fermi liquid in two dimensions due to umklapp scattering. Phys. Rev. B 63, 035109 (2001)ADSGoogle Scholar
  169. 169.
    Honerkamp, C., Salmhofer, M., Rice, T.M.: Flow to strong coupling in the two-dimensional Hubbard model. Euro. Phys. J. B 27, 127 (2002)ADSGoogle Scholar
  170. 170.
    Hankevych, V., Grote, I., Wegner, F.: Pomeranchuk and other instabilities in the t-t’ Hubbard model at the van hove filling. Phys. Rev. B 66, 094516 (2002)ADSGoogle Scholar
  171. 171.
    Lamas, C.A., Cabra, D.C., Grandi, N.: Fermi liquid instabilities in two-dimensional lattice models. Phys. Rev. B 78, 115104 (2008)ADSGoogle Scholar
  172. 172.
    Quintanilla, J., Haque, M., Schofield, A.J.: Symmetry-breaking Fermi surface deformations from central interactions in two dimensions. Phys. Rev. B 78, 035131 (2008)ADSGoogle Scholar
  173. 173.
    Sun, K., Yao, H., Fradkin, E., Kivelson, S.A.: Topological insulators and nematic phases from spontaneous symmetry breaking in 2D Fermi systems with a quadratic band crossing. Phys. Rev. Lett. 103, 046811 (2009)ADSGoogle Scholar
  174. 174.
    Yamase, H., Kohno, H.: Possible quasi-one-dimensional Fermi surface in \(\hbox{La}_{2-x}\hbox{Sr}_{x}\hbox{CuO}_4\). J. Phys. Soc. Jpn. 69, 2151 (2000)ADSGoogle Scholar
  175. 175.
    Miyanaga, A., Yamase, H.: Orientational symmetry-breaking correlations in square lattice t-J model. Phys. Rev. B 73, 174513 (2006)ADSGoogle Scholar
  176. 176.
    Kivelson, S.A., Fradkin, E., Geballe, T.H.: Quasi-1D dynamics and the Nematic phase of the 2D emery model. Phys. Rev. B 69, 144505 (2004)ADSGoogle Scholar
  177. 177.
    Lawler, M.J., Barci, D.G., Fernández, V., Fradkin, E., Oxman, L.: Nonperturbative behavior of the quantum phase transition to a nematic Fermi fluid. Phys. Rev. B 73, 085101 (2006)ADSGoogle Scholar
  178. 178.
    Lawler, M.J., Fradkin, E.: Local quantum criticality in the nematic quantum phase transition of a Fermi fluid. Phys. Rev. B 75, 033304 (2007)ADSGoogle Scholar
  179. 179.
    Metlitski, M.A., Sachdev, S.: Quantum phase transitions of metals in two spatial dimensions:I. Ising-nematic order. Phys. Rev. B 82, 075127 (2010)ADSGoogle Scholar
  180. 180.
    Kee, H.Y., Kim, Y.B.: Itinerant metamagnetism induced by electronic nematic order. Phys. Rev. B 71, 184402 (2005)ADSGoogle Scholar
  181. 181.
    Yamase, H., Katanin, A.A.: Van Hove singularity and spontaneous Fermi surface symmetry breaking in \(\hbox{Sr}_3\hbox{Ru}_2\hbox{O}_7\). J. Phys. Soc. Jpn. 76, 073706 (2007)ADSGoogle Scholar
  182. 182.
    Puetter, C.M., Doh, H., Kee, H.-Y.: Meta-nematic transitions in a bilayer system: application to the bilayer ruthenate. Phys. Rev. B 76, 235112 (2007)ADSGoogle Scholar
  183. 183.
    Puetter, C.M., Rau, J.G., Kee, H.-Y.: Microscopic route to nematicity in \(\hbox{Sr}_{3}\hbox{Ru}_{2}\hbox{O}_{7}\). Phys. Rev. B 81, 081105 (2010)ADSGoogle Scholar
  184. 184.
    Raghu, S., Paramekanti, A., Kim, E.-A., Borzi, R.A., Grigera, S., Mackenzie, A.P., Kivelson, S.A.: Microscopic theory of the nematic phase in \(\hbox{Sr}_{3}\hbox{Ru}_{2}\hbox{O}_{7}\). Phys. Rev. B 79, 214402 (2009)ADSGoogle Scholar
  185. 185.
    Lee, W.C., Wu, C.: Nematic electron states enhanced by orbital band hybridization. Phys. Rev. B 80, 104438 (2009)ADSGoogle Scholar
  186. 186.
    Fregoso, B.M., Sun, K., Fradkin, E., Lev, B.L.: Biaxial nematic phases in ultracold dipolar Fermi gases. New J. Phys. 11, 103003 (2009)ADSGoogle Scholar
  187. 187.
    Fregoso, B.M., Fradkin, E.: Ferro-Nematic ground state of the dilute dipolar Fermi gas. Phys. Rev. Lett. 103, 205301 (2009)Google Scholar
  188. 188.
    Kim, E.A., Lawler, M.J., Oreto, P., Sachdev, S., Fradkin, E., Kivelson, S.A.: Theory of the nodal nematic quantum phase transition in superconductors. Phys. Rev. B 77, 184514 (2008)ADSGoogle Scholar
  189. 189.
    Huh, Y., Sachdev, S.: Renormalization group theory of nematic ordering in d-wave superconductors. Phys. Rev. B 78, 064512 (2008)ADSGoogle Scholar
  190. 190.
    Varma, C.M.: Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 4554 (1997)Google Scholar
  191. 191.
    Barci, D.G., Oxman, L.E.: Strongly correlated fermions with nonlinear energy dispersion and spontaneous generation of anisotropic phases. Phys. Rev. B 67, 205108 (2003)ADSGoogle Scholar
  192. 192.
    Zacharias, M., Wölfle, P., Garst, M.: Multiscale quantum criticality: Pomeranchuk instability in isotropic metals. Phys. Rev. B 80, 165116 (2009)ADSGoogle Scholar
  193. 193.
    Hertz, J.A.: Quantum critical phenomena. Phys. Rev. B 14, 1165 (1976)ADSGoogle Scholar
  194. 194.
    Millis, A.J.: Effect of a nonzero temperature on quantum critical points in itinerant Fermion systems. Phys. Rev. B 48, 7183 (1993)ADSGoogle Scholar
  195. 195.
    Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge, UK (1999)Google Scholar
  196. 196.
    Jain, J.K.: Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199 (1989)ADSGoogle Scholar
  197. 197.
    Lopez, A., Fradkin, E.: Fractional quantum Hall effect and Chern-Simons gauge theories. Phys. Rev. B 44, 5246 (1991)ADSGoogle Scholar
  198. 198.
    Halperin, B.I., Lee, P.A., Read, N.: Theory of the half-filled Landau level. Phys. Rev. B 47, 7312 (1993)ADSGoogle Scholar
  199. 199.
    Rezayi, E., Read, N.: Fermi-liquid-like state in a half-filled Landau level. Phys. Rev. Lett. 72, 900 (1994)ADSGoogle Scholar
  200. 200.
    Doan, Q.M., Manousakis, E.: Variational Monte Carlo calculation of the nematic state of the two-dimensional electron gas in a magnetic field. Phys. Rev. B 78, 075314 (2008)ADSGoogle Scholar
  201. 201.
    Dell’Anna, L., Metzner, W.: Electrical resistivity near pomeranchuk instability in two dimensions. Phys. Rev. Lett. 98, 136402 (2007). Erratum: Phys. Rev. Lett. 103, 220602 (2009)Google Scholar
  202. 202.
    Haldane, F.D.M.: In: Schrieffer, J.R., Broglia, R. (ed.) Proceedings of the International School of Physics Enrico Fermi, course 121, Varenna, 1992. North-Holland, New York (1994)Google Scholar
  203. 203.
    Castro Neto, A.H., Fradkin, E.: Bosonization of the low energy excitations of Fermi liquids. Phys. Rev. Lett. 72, 1393 (1994)Google Scholar
  204. 204.
    Castro Neto, A.H., Fradkin, E.H.: Exact solution of the Landau fixed point via bosonization. Phys. Rev. B 51, 4084 (1995)ADSGoogle Scholar
  205. 205.
    Houghton, A., Marston, J.B.: Bosonization and fermion liquids in dimensions greater than one. Phys. Rev. B 48, 7790 (1993)ADSGoogle Scholar
  206. 206.
    Houghton, A., Kwon, H.J., Marston, J.B.: Multidimensional bosonization. Adv. Phys. 49, 141 (2000)ADSGoogle Scholar
  207. 207.
    Ghaemi, P., Vishwanath, A., Senthil, T.: Finite temperature properties of quantum Lifshitz transitions between valence-bond solid phases: an example of local quantum criticality. Phys. Rev. B 72, 024420 (2005)ADSGoogle Scholar
  208. 208.
    Chubukov, A.V., Pépin, C., Rech, J.: Instability of the quantum critical point of itinerant ferromagnets. Phys. Rev. Lett. 92, 147003 (2004)ADSGoogle Scholar
  209. 209.
    Chubukov, A.V.: Self-generated locality near a ferromagnetic quantum critical point. Phys. Rev. B 71, 245123 (2005)ADSGoogle Scholar
  210. 210.
    Rech, J., Pépin, C., Chubukov, A.V.: Quantum critical behavior in itinerant electron systems–Eliashberg theory and instability of a ferromagnetic quantum critical point. Phys. Rev. B 74, 195126 (2006)ADSGoogle Scholar
  211. 211.
    Holstein, T., Norton, R.E., Pincus, P.: de Haas-van Alphen effect and the specific heat of an electron gas. Phys. Rev. B 8, 2649 (1973)ADSGoogle Scholar
  212. 212.
    Baym, G., Monien, H., Pethick, C.J., Ravenhall, D.G.: Transverse interactions and transport in relativistic quark-gluon and electromagnetic plasmas. Phys. Rev. Lett. 64, 1867 (1990)ADSGoogle Scholar
  213. 213.
    Boyanovsky, D., de Vega, H.J.: Non-Fermi-liquid aspects of cold and dense QED and QCD: equilibrium and non-equilibrium. Phys. Rev. D 63, 034016 (2001)ADSGoogle Scholar
  214. 214.
    Reizer, M.Y.: Relativistic effects in the electron density of states, specific heat, and the electron spectrum of normal metals. Phys. Rev. B 40, 11571 (1989)ADSGoogle Scholar
  215. 215.
    Ioffe, L.B., Wiegmann, P.B.: Linear temperature dependence of resistivity as evidence of gauge interaction. Phys. Rev. Lett. 65, 653 (1990)ADSGoogle Scholar
  216. 216.
    Nagaosa, N., Lee, P.A.: Experimental consequences of the uniform resonating-valence-bond state. Phys. Rev. B 43, 1233 (1991)ADSGoogle Scholar
  217. 217.
    Polchinski, J.: Low-energy dynamics of the spinon-gauge system. Nucl. Phys. B 422, 617 (1994)ADSMathSciNetGoogle Scholar
  218. 218.
    Chakravarty, S., Norton, R.E., Syljuasen, O.F.: Transverse gauge interactions and the vanquished Frmi liquid. Phys. Rev. Lett. 74, 1423 (1995)ADSGoogle Scholar
  219. 219.
    Lee, S.S.: Low-energy effective theory of Fermi surface coupled with U(1) gauge field in 2 + 1 dimensions. Phys. Rev. B 80, 165102 (2009)ADSGoogle Scholar
  220. 220.
    Jakubczyk, P., Metzner, W., Yamase, H.: Turning a first order quantum phase transition continuous by fluctuations. Phys. Rev. Lett. 103, 220602 (2009)ADSGoogle Scholar
  221. 221.
    Hirsch, J.E.: Spin-split states in metals. Phys. Rev. B 41, 6820 (1990)ADSGoogle Scholar
  222. 222.
    Varma, C.M., Zhu, L.: Helicity order: hidden order parameter in \(\hbox{URu}_2\hbox{Si}_2\). Phys. Rev. Lett. 96, 036405 (2006)ADSGoogle Scholar
  223. 223.
    Simon, M.E., Varma, C.M.: Detection and implications of a time-reversal breaking state in underdoped cuprates. Phys. Rev. Lett. 89, 247003 (2002)ADSGoogle Scholar
  224. 224.
    Haldane, F.D.M.: Berry Curvature on the Fermi surface: anomalous Hall effect as a topological Fermi-liquid property. Phys. Rev. Lett. 93, 206602 (2004)ADSGoogle Scholar
  225. 225.
    Nelson, D.R., Toner, J.: Bond-orientational order, dislocation loops, and melting of solids and smectic-A liquid crystals. Phys. Rev. B 24, 363 (1981)ADSMathSciNetGoogle Scholar
  226. 226.
    Toner, J., Nelson, D.R.: Smectic, cholesteric, and Rayleigh-Benard order in two dimensions. Phys. Rev. B 23, 316 (1981)ADSMathSciNetGoogle Scholar
  227. 227.
    Zaanen, J., Nussinov, Z., Mukhin, S.I.: Duality in 2 + 1 D quantum elasticity: superconductivity and quantum nematic order. Ann. Phys. 310, 181 (2004)zbMATHADSGoogle Scholar
  228. 228.
    Cvetkovic, V., Nussinov, Z., Zaanen, J.: Topological kinematical constraints: quantum dislocations and glide principle. Phil. Mag. 86, 2995 (2006)ADSGoogle Scholar
  229. 229.
    Sun, K., Fregoso B.M., Lawler M.J., Fradkin E.: Fluctuating stripes in strongly correlated electron systems and the nematic-smectic quantum phase transition. Phys. Rev. B 78, 085124 (2008). Erratum: Phys. Rev. B 80, 039901(E) (2008).Google Scholar
  230. 230.
    Kirkpatrick, T.R., Belitz, D.: Soft modes in electronic stripe phases and their consequences for thermodynamics and transport Phys. Rev. B 80, 075121 (2009)Google Scholar
  231. 231.
    Millis, A.J.: Fluctuation-driven first order behavior near the T = 0 two dimensional stripe to Fermi liquid transition. Phys. Rev. B 81, 035117 (2010)ADSGoogle Scholar
  232. 232.
    Halperin, B.I., Lubensky, T.C., Ma, S.-K.: First-order phase transitions in superconductors and smectic—a liquid crystals. Phys. Rev. Lett. 32, 292 (1974)ADSGoogle Scholar
  233. 233.
    Altshuler, B.L., Ioffe, L.B., Millis, A.J.: Critical behavior of the T = 0, 2 \(k_{F},\) density-wave phase transition in a two-dimensional Fermi liquid. Phys. Rev. B 52, 5563 (1995)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations