Skip to main content

An Analysis and Evaluation of the Saving Capability and Feasibility of Backward-Chaining Evolutionary Algorithms

  • Conference paper
Artificial Life: Borrowing from Biology (ACAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5865))

Included in the following conference series:

Abstract

Artificial Intelligence, volume 170, number 11, pages 953–983, 2006 published a paper titled “Backward-chaining evolutionary algorithm”. It introduced two fitness evaluation saving algorithms which are built on top of standard tournament selection. One algorithm is named Efficient Macro-selection Evolutionary Algorithm (EMS-EA) and the other is named Backward-chaining EA (BC-EA). Both algorithms were claimed to be able to provide considerable fitness evaluation savings, and especially BC-EA was claimed to be much efficient for hard and complex problems which require very large populations. This paper provides an evaluation and analysis of the two algorithms in terms of the feasibility and capability of reducing the fitness evaluation cost. The evaluation and analysis results show that BC-EA would be able to provide computational savings in unusual situations where given problems can be solved by an evolutionary algorithm using a very small tournament size, or a large tournament size but a very large population and a very small number of generations. Other than that, the saving capability of BC-EA is the same as EMS-EA. Furthermore, the feasibility of BC-EA is limited because two important assumptions making it work hardly hold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Poli, R., Langdon, W.B.: Backward-chaining evolutionary algorithms. Artificial Intelligence 170, 953–982 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Koza, J.R.: Genetic Programming — On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  3. Francone, F.D.: Discipulus Owner’s Manual (2000), http://www.aimlearning.com/TechnologyOverview.htm

  4. Xie, H., Zhang, M., Andreae, P.: Another investigation on tournament selection: modelling and visualisation. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 1468–1475 (2007)

    Google Scholar 

  5. Luke, S., Panait, L.: A comparison of bloat control methods for genetic programming. Evolutionary Computation 14, 309–344 (2006)

    Article  Google Scholar 

  6. da Silva, S.G.O.: Controlling Bloat: Individual and Population Based Approaches in Genetic Programming. PhD thesis, University of Coimbra (2008)

    Google Scholar 

  7. Kinzett, D., Zhang, M., Johnston, M.: Using numerical simplification to control bloat in genetic programming. In: Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 493–502. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Dignum, S., Poli, R.: Operator equalisation and bloat free gp. In: O’Neill, M., et al. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 110–121. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xie, H., Zhang, M. (2009). An Analysis and Evaluation of the Saving Capability and Feasibility of Backward-Chaining Evolutionary Algorithms. In: Korb, K., Randall, M., Hendtlass, T. (eds) Artificial Life: Borrowing from Biology. ACAL 2009. Lecture Notes in Computer Science(), vol 5865. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10427-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10427-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10426-8

  • Online ISBN: 978-3-642-10427-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics