Database Are Not Toasters: A Framework for Comparing Data Warehouse Appliances

  • Omer Trajman
  • Alain Crolotte
  • David Steinhoff
  • Raghunath Othayoth Nambiar
  • Meikel Poess
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5895)

Abstract

The success of Business Intelligence (BI) applications depends on two factors, the ability to analyze data ever more quickly and the ability to handle ever increasing volumes of data. Data Warehouse (DW) and Data Mart (DM) installations that support BI applications have historically been built using traditional architectures either designed from the ground up or based on customized reference system designs. The advent of Data Warehouse Appliances (DA) brings packaged software and hardware solutions that address performance and scalability requirements for certain market segments. The differences between DAs and custom installations make direct comparisons between them impractical and suggest the need for a targeted DA benchmark. In this paper we review data warehouse appliances by surveying thirteen products offered today. We assess the common characteristics among them and propose a classification for DA offerings. We hope our results will help define a useful benchmark for DAs.

Keywords

Appliances Benchmark Development Databases Data Warehousing Database Systems Standard 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wikipedia contributors, Data warehouse appliance. Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/wiki/Data_warehouse_appliance (accessed June 20, 2009)
  2. 2.
    Hinshaw, F.D.: Tera-Scale Data Appliances for Business Intelligence. The Data Administration Newsletter (April 1, 2003), http://www.tdan.com/view-articles/5075
  3. 3.
    MacDonald, et al.: Findings: Not All Appliances’ Are Appliances. Gartner Research (September 12, 2006)Google Scholar
  4. 4.
    SQL Server Technical Article: Data Warehouse in the Enterprise, A Competitive Review of Enterprise Data Warehouse Appliances and Technology Solutions, Microsoft web site (January 2009), http://tinyurl.com/l8b4x6
  5. 5.
    Greenplum website: The Data Warehouse Appliance, http://www.greenplum.com/partners/data_warehouse_appliance/ Sun, Greenplum Unveil Data Warehouse Appliance, http://www.hpcwire.com/offthewire/17886374.html?viewAll=y
  6. 6.
    HP Neoview Enterprise Data Warehouse, http://www.hp.com/go/neoview
  7. 7.
  8. 8.
    A Next-Generation TeramartTM Solution from Vertica, HP & Red Hat, http://www.vertica.com/appliance
  9. 9.
    Shanley, K.: History and Overview of the TPC, http://www.tpc.org/information/about/history.asp
  10. 10.
    IBM Business Intelligence, http://ibm.com/bi
  11. 11.
  12. 12.
    Microsoft DATAllegro: DATAllegro Data Warehouse Appliance, http://www.datallegro.com/data_warehouse_appliances/data_warehouse_overview.asp
  13. 13.
    Netezza Marketing Collateral: Data Warehouse Appliance, http://www.netezza.com/data-warehouse-appliance-products/dw-appliance.aspx
  14. 14.
  15. 15.
    TPC Policies v5.17, http://tinyurl.com/l88ykx

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Omer Trajman
    • 1
  • Alain Crolotte
    • 2
  • David Steinhoff
    • 3
  • Raghunath Othayoth Nambiar
    • 4
  • Meikel Poess
    • 5
  1. 1.Vertica SystemsBillericaUSA
  2. 2.TeradataSan DeigoUSA
  3. 3.ParAccelSan DiegoUSA
  4. 4.Hewlett-Packard CompanyHoustonUSA
  5. 5.Oracle CorporationRedwood ShoresUSA

Personalised recommendations