Skip to main content

The Nature of Stromatolites: 3,500 Million Years of History and a Century of Research

  • Chapter
  • First Online:
Advances in Stromatolite Geobiology

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 131))

Abstract

Stromatolites are widely regarded as layered, early lithified, authigenic microbial structures – often domical or columnar in form – that developed at the sediment water interface in freshwater, marine and evaporitic environments

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott G (1914) Is ‘Atikokania lawsoni’ a concretion? Nature 94: 477–478

    Article  Google Scholar 

  • Adelman J (2007) Eozoön: debunking the dawn animal. Endeavour 31: 94–98

    Article  Google Scholar 

  • Aitken JD (1967) Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology 37: 1163–1178

    Google Scholar 

  • Aitken JD (1989) Giant “algal” reefs, Middle/Upper Proterozoic Little Dal Group (>770, <1200Ma), Mackenzie Mountains, N.W.T., Canada. In: Geldsetzer HHJ, James NP, Tebbutt GE (eds) Reefs, Canada and Adjacent Area. Canadian Society of Petroleum Geologists, Memoir 13: 13–23

    Google Scholar 

  • Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441: 714–718

    Article  Google Scholar 

  • Arp G, Reimer A, Reitner J (2003) Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. Journal of Sedimentary Research 73: 105–127

    Article  Google Scholar 

  • Arp G, Bissett A, Brinkmann N, Cousin S, de Beer D, Friedl T, Mohr KI, Neu TR, Reimer A, Shiraishi F, Stackebrandt E, Zippel B (2010) Tufa-forming biofilms of German karstwater streams: microorganisms, exopolymers, hydrochemistry and calcification. In: Pedley M, Rogerson M (eds) Tufas and Speleothems. Geological Society of London Special Publication 336: 83–118

    Google Scholar 

  • Awramik SM, Grey K (2005) Stromatolites: biogenicity, biosignatures, and bioconfusion. Proceedings of SPIE 5906: 5906P-1-5906P-9

    Google Scholar 

  • Awramik SM, Margulis L (1974) Stromatolite Newsletter 2: 5

    Google Scholar 

  • Awramik M, Riding R (1986) “Golden Age” stromatolites and modern analogs. Society of Economic Paleontologists and Mineralogists Annual Midyear Meeting, Raleigh, North Carolina, September 1986, Abstracts III: 3–4

    Google Scholar 

  • Awramik SM, Riding R (1988) Role of algal eukaryotes in subtidal columnar stromatolite formation. Proceedings of the National Academy of Sciences of the United States of America 85: 1327–1329

    Article  Google Scholar 

  • Bailey L, Matthew GF (1872) Preliminary report on the geology of New Brunswick. Geological Survey of Canada, Reports of Progress 1870–1871, 15–57

    Google Scholar 

  • Barghoorn ES, Tyler SA (1965) Microorganisms from the Gunflint Chert. Science 147: 563–575

    Article  Google Scholar 

  • Batchelor MT, Burne RV, Henry BI, Watt SD (2000) Deterministic KPZ model for stromatolite laminae. Physica A 282: 123–136

    Article  Google Scholar 

  • Batchelor MT, Burne RV, Henry BI, Watt SD (2003) Mathematical and image analysis of stromatolite morphogenesis. Mathematical Geology 35: 789–803

    Article  Google Scholar 

  • Bell R (1870) Report on lakes Superior and Nipigon. Geological Survey of Canada, Reports of Progress 1866–1869, 313–364

    Google Scholar 

  • Bertrand-Sarfati J (1972) Stromatolites columnaires du Pré-cambrien supérieur du Sahara Nord-Occidental. CNRS, Paris, Centre de Recherches sur les Zones Arides, Géologie: 14, xxxvii+ 245 pp

    Google Scholar 

  • Bertrand-Sarfati J, Monty C (eds) (1994) Phanerozoic Stromatolites II. Kluwer, Dordrecht, 471 pp

    Google Scholar 

  • Bertrand-Sarfati J, Freytet P, Plaziat JC (1994) Microstructures in Tertiary nonmarine stromatolites (France). Comparison with Proterozoic. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic Stromatolites II. Kluwer, Dordrecht, pp 155–191

    Chapter  Google Scholar 

  • Black M (1933) The algal sedimentation of Andros Island Bahamas. Philosophical Transactions of the Royal Society (London) Series B: Biological Science 222: 165–192

    Article  Google Scholar 

  • Bloos G (1976) Untersuchungen über Bau und Entstehung der feinkörnigen Sandsteine des Schwarzen Jura (α) (Hettangium und tiefstes Sinemurium) im schwäbischen Sedimentationsbereich. Arbeiten aus dem Institut für Geologie und Paläontologie an der Universität Stuttgart 71: 1–277

    Google Scholar 

  • Brachert TC, Dullo W-C (1991) Laminar crusts and associated foreslope processes, Red Sea. Journal of Sedimentary Research 61: 354–363

    Google Scholar 

  • Bradley WH (1928) Algae reefs and oolites of the Green River Formation. US Geological Survey Professional Paper 154: 203–233

    Google Scholar 

  • Braga JC, Martín JM, Riding R (1995) Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect, Miocene, SE Spain. Palaios 10: 347–361

    Article  Google Scholar 

  • Brasier M, McLoughlin N, Green O, Wacey D (2006) A fresh look at the fossil evidence for early Archaean cellular life. Philosophical Transactions of the Royal Society (London) B Biological Sciences 361: 887–902

    Article  Google Scholar 

  • Browne KM, Golubic S, Seong-Joo L (2000) Shallow marine microbial carbonate deposits. In: Riding R, Awramik SM (eds) Microbial Sediments. Springer, Berlin, pp 233–249

    Google Scholar 

  • Bucher WH (1913) Über einige Fossilien und über Stromatolithbildung im Tertiär der bayerischen Rheinpfalz. München Geognostische Jahreshefte, Jahrgang 26: 76–102

    Google Scholar 

  • Bucher WH (1918) On oölites and spherulites. Journal of Geology 26: 593–609

    Article  Google Scholar 

  • Buick R (1992) The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255: 74–77

    Article  Google Scholar 

  • Buick R, Dunlop JSR, Groves DI (1981) Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa 5: 161–181

    Article  Google Scholar 

  • Burne RV, Moore L (1987) Microbialites; organosedimentary deposits of benthic microbial communities. Palaios 2: 241–254

    Article  Google Scholar 

  • Cabioch G, Camoin GF, Montaggioni LF (1999) Postglacial growth history of a French Polynesian barrier reef tract, Tahiti, central Pacific. Sedimentology 46: 985–1000

    Article  Google Scholar 

  • Cabioch G, Camoin G, Webb GE, Le Cornec F, Garcia Molina M, Pierre C, Joachimski MM (2006) Contribution of microbialites to the development of coral reefs during the last deglacial period: case study from Vanuatu (South-West Pacific). Sedimentary Geology 185: 297–318

    Article  Google Scholar 

  • Cameron BW, Cameron D, Jones JR (1985) Modern algal mats in intertidal and supratidal quartz sands, northeastern Massachusetts, U.S.A. In Curran HA (ed) Biogenic structures: their use in interpreting depositional environments. SEPM Special Publication 35: 211–224

    Google Scholar 

  • Camoin GF, Montaggioni LF (1994) High energy coralgal-stromatolite frameworks from Holocene reefs (Tahiti, French Polynesia). Sedimentology 41: 655–676

    Article  Google Scholar 

  • Camoin GF, Gautret P, Montaggioni LF, Cabioch G (1999) Nature and environmental significance of microbialites in Quaternary reefs: The Tahiti paradox. Sedimentary Geology 126: 271–304

    Article  Google Scholar 

  • Camoin G, Cabioch G, Eisenhauer A, Braga J-C, Hamelin B, Lericolais G (2006) Environmental significance of microbialites in reef environments during the last deglaciation. Sedimentary Geology 185: 277–295

    Article  Google Scholar 

  • Camoin GF, Iryu Y, McInroy DB, Expedition 310 Scientists (2007) Proceedings of the Integrated Ocean Drilling Program, volume 310, 83 pp. Washington, DC, 310, doi:10.2204/iodp.proc.310.2007

    Google Scholar 

  • Chafetz HS (1986) Marine peloids; a product of bacterially induced precipitation of calcite. Journal of Sedimentary Petrology 56: 812–817

    Google Scholar 

  • Cohen Y, Rosenberg E (eds) (1989) Microbial Mats; Physiological Ecology of Benthic Microbial Communities. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Corsetti FA, Storrie-Lombardi MC (2003) Lossless compression of stromatolite images: a biogenicity index? Astrobiology 3: 649–655

    Article  Google Scholar 

  • Dabrio CJ, Esteban M, Martin JM (1981) The coral reef of Nijar, Messinian (uppermost Miocene), Almeria Province, S.E. Spain. Journal of Sedimentary Petrology 51: 521–539

    Google Scholar 

  • Davies G R (1970) Carbonate bank sedimentation, eastern. Shark Bay, Western Australia. American Association of Petroleum Geologists Memoirs 75: 85–168

    Google Scholar 

  • Dawson JW (1865) On the structure of certain organic remains in the Laurentian limestones of Canada. Quarterly Journal of the Geological Society London 21: 51–59

    Article  Google Scholar 

  • Dawson JW (1876) Notes on the occurrence of Eozoön canadense at Côte St. Pierre. Quarterly Journal of the Geological Society London 32: 66–75

    Article  Google Scholar 

  • Dawson W (1896) Note on Cryptozoon and other ancient fossils. The Canadian Record of Science 7: 203–219

    Google Scholar 

  • de Laubenfels MW (1955) Porifera. In: Moore RC (ed) Treatise on Invertebrate Paleontology, Part E, Archaeocyatha and Porifera. Geological Society of America and University of Kansas Press, Lawrence, pp E21–E112

    Google Scholar 

  • Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Continental Shelf Research 20: 1257–1273

    Article  Google Scholar 

  • Decho AW, Visscher PT, Reid RP (2005) Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeography, Palaeoclimatology, Palaeoecology 219: 71–86

    Article  Google Scholar 

  • Des Marais DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biological Bulletin 204: 160–167

    Article  Google Scholar 

  • Dill RF, Shinn EA, Jones AT, Kelly K, Steinen RP (1986) Giant subtidal stromatolites forming in normal salinity waters. Nature 324: 55–58

    Article  Google Scholar 

  • Dill RF, Kendall CGStC, Shinn EA (1989) Giant subtidal stromatolites and related sedimentary features. 28th International Geological Congress, American Geophysical Union, Washington, DC, Field Trip Guidebook T373, 33 pp

    Google Scholar 

  • Dravis, JJ (1983) Hardened subtidal stromatolites, Bahamas. Science 219: 385–386

    Article  Google Scholar 

  • Dupraz C, Pattisina R, Verrecchia EP. (2006) Translation of energy into morphology: simulation of stromatolite morphospace using a stochastic model. Sedimentary Geology 185: 185–203

    Article  Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews 96: 141–162

    Article  Google Scholar 

  • Expedition 310 Scientists (2007) Maraa eastern transect: sites M0015–M0018. In: Camoin GF, Iryu Y, McInroy DB, Expedition 310 Scientists (eds). Proceedings of the IODP, 310: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.), 83 pp. doi:10.2204/iodp.proc.310.106.2007

  • Feldmann M, McKenzie JA (1997) Messinian stromatolite-thrombolite associations, Santa Pola, SE Spain: an analogue for the Palaeozoic? Sedimentology 44: 893–914

    Article  Google Scholar 

  • Fenton CL (1943) Pre-Cambrian and early Paleozoic algae. American Midland Naturalist 30: 83–111

    Article  Google Scholar 

  • Fenton CL, Fenton MA (1936) Walcott’s ‘Pre-Cambrian Algonkian algal flora’ and associated animals. Geological Society of America Bulletin 47: 609–620

    Google Scholar 

  • Garrett P (1969) The geology and biology of large cavities in Bermuda reefs. In: Ginsburg RN, Garrett P (eds), Reports of research 1968 seminar on organism-sediment relationships. Bermuda Biological Field Station Research Special Publication 6: 77–88

    Google Scholar 

  • Garwood EJ (1913) On the important part played by calcareous algae at certain geological horizons, with special reference to the Palaeozoic rocks. Geological Magazine Decade 5, 10: 440–446, 490–498, 545–553

    Google Scholar 

  • Gebelein CD (1974) Biologic control of stromatolite microstructure: implications for pre-cambrian time stratigraphy. American Journal of Science 274: 575–598

    Article  Google Scholar 

  • Gerdes G, Krumbein WE (1994) Peritidal potential stromatolites – a synopsis. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic Stromatolites II. Kluwer, Dordrecht, pp 101–129

    Chapter  Google Scholar 

  • Gerdes G, Krumbein WE, Reineck H-E (1985) The depositional record of sandy, versicolored tidal flats (Mellum Island, southern North Sea). Journal of Sedimentary Petrology 55: 265–278

    Google Scholar 

  • Gerdes G, Claes M, Dunajtschik-Piewak K, Riege H, Krumbein WE, Reineck H-E (1993) Contribution of microbial mats to sedimentary surface structures. Facies 29: 61–74

    Article  Google Scholar 

  • Gerdes G, Krumbein WE, Noffke N (2000) Evaporite microbial sediments. In: Riding R, Awramik SM (eds) Microbial Sediments. Springer, Berlin, pp 196–208

    Google Scholar 

  • Ginsburg RN (1960) Ancient analogues of recent stromatolites. International Geological Congress, 21st, Copenhagen, part 22, 26–35

    Google Scholar 

  • Ginsburg RN (1991) Controversies about stromatolites: vices and virtues. In: Muller DW, McKenzie JA, Weissert H (eds), Controversies in Modern Geology; Evolution of Geological Theories in Sedimentology, Earth History and Tectonics, Academic Press, London, pp 25–36

    Google Scholar 

  • Ginsburg RN, Planavsky NJ (2008) Diversity of Bahamian stromatolite substrates. In: Dilek Y, Furnes H, Muehlenbachs K (eds) Links between geological processes, microbial activities and evolution of life. Modern Approaches in Solid Earth Sciences 4: 177–195

    Google Scholar 

  • Ginsburg RN, Isham LB, Bein SJ, Kuperberg J (1954) Laminated Algal Sediments of South Florida and their Recognition in the Fossil Record. Marine Laboratory, University of Miami, Coral Gables, Florida, Unpublished Report, 54–21, 33 pp

    Google Scholar 

  • Glaessner MF (1962) Pre-cambrian fossils. Biological Reviews 37: 467–493

    Google Scholar 

  • Goldring W (1938) Algal barrier reefs in the Lower Ozarkian of New York with a chapter on the importance of coralline algae as reef builders through the ages. Bulletin of the New York State Museum 315: 5–75

    Google Scholar 

  • Golubic S (1976) Organisms that build stromatolites. In: Walter MR (ed) Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, pp 113–140

    Chapter  Google Scholar 

  • Grotzinger JP (1986a) Cyclicity and paleoenvironmental dynamics, Rocknest platform, northwest Canada. Geological Society of America Bulletin 97: 1208–1231

    Article  Google Scholar 

  • Grotzinger JP (1986b) Evolution of Early Proterozoic passive-margin carbonate platform, rocknest formation, wopmay orogen, Northwest Territories, Canada. Journal of Sedimentary Petrology 56: 831–847

    Google Scholar 

  • Grotzinger JP (1989a) Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. In: Crevello PD, Wilson JL, Sarg JF, Read JF (eds) Controls on carbonate platform and basin development. SEPM Special Publication Number 44: 79–106

    Google Scholar 

  • Grotzinger JP (1989b) Introduction to Precambrian reefs. In: Geldsetzer HHJ, James NP, Tebbutt GE (eds) Reefs, Canada and adjacent areas. Canadian Society of Petroleum Geologists Memoir 13: 9–12

    Google Scholar 

  • Grotzinger JP (1990) Geochemical model for Proterozoic stromatolite decline. American Journal of Science 290: 80–103

    Google Scholar 

  • Grotzinger JP, James NP (2000a) Precambrian carbonates: evolution of understanding. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in the evolving Precambrian world. SEPM Special Publication Number 67: 3–20

    Google Scholar 

  • Grotzinger JP, James NP (eds) (2000b) Carbonate sedimentation and diagenesis in the evolving Precambrian World. SEPM Special Publication Number 67: 364

    Google Scholar 

  • Grotzinger JP, Kasting JF (1993) New constraints on Precambrian ocean composition. Journal of Geology 101: 235–243

    Article  Google Scholar 

  • Grotzinger JP, Knoll AH (1995) Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios 10: 578–596

    Article  Google Scholar 

  • Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Reviews of Earth and Planetary Sciences 27: 313–358

    Article  Google Scholar 

  • Grotzinger JP, Read JF (1983) Evidence for primary aragonite precipitation, lower Proterozoic (1.9-Ga) Rocknest Dolomite, Wopmay Orogen, Northwest Canada. Geology 11: 710–713

    Article  Google Scholar 

  • Grotzinger JP, Rothman DR (1996) An abiotic model for stromatolite morphogenesis. Nature 383: 423–425

    Article  Google Scholar 

  • Gürich G (1906) Les spongiostromides du Viséen de la Province de Namur. Musée Royal d'Histoire Naturelle de Belgique, Mémoires 3(4): 1–55

    Google Scholar 

  • Hadding A (1927) The pre-Quaternary sedimentary rocks of Sweden. I. A survey of the pre-Quaternary rocks of Sweden. II. The Paleozoic and. Mesozoic conglomerates of Sweden. Lunds Universitets Årsskrift, Nya Förhandlingar (2) 23: 41–171

    Google Scholar 

  • Hagadorn JW, Bottjer DJ (1997) Wrinkle structures: microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition. Geology 25: 1047–1050

    Article  Google Scholar 

  • Hall J (1883) Cryptozoön, n.g.; Cryptozoön proliferum, nsp. New York State Museum of Natural History, 36th Annual Report of the Trustees, plate6

    Google Scholar 

  • Häntzschel W, Reineck H-E (1968) Fazies-Untersuchungen im Hettangium von Helmstedt (Niedersachsen). Mitteilungen des Geologischen Staatsinstuts Hamburg 37: 5–39

    Google Scholar 

  • Heim A (1916) Monographie der Churfirsten-Mattstock-Gruppe, III. Stratigraphie der Unteren Kreide und des Jura. Zur Lithogenesis. Beiträge zur geologischen Karte der Schweiz NF 20: 369–662

    Google Scholar 

  • Heindel K, Birgel D, Peckmann J, Kuhnert H, Westphal H (2009) Sulfate-reducing bacteria as major players in the formation of reef-microbialites during the last sea-level rise (Tahiti, IODP 310). Geochimica et Cosmochimica Acta 73 (13), Goldschmidt Conference Abstracts, p A514

    Google Scholar 

  • Hoffman PF (1973) Recent and ancient algal stromatolites: seventy years of pedagogic cross-pollination. In: Ginsburg RN (ed) Evolving Concepts in Sedimentology. The Johns Hopkins University Studies in Geology 21. The Johns Hopkins University Press, Baltimore, London, pp 178–191

    Google Scholar 

  • Hoffman PF (1975) Shoaling-upward shale-to-dolomite cycles in the Rocknest Formation (lower Proterozoic), Northwest Territories, Canada. In: Ginsburg RN (ed) Tidal Deposits. Springer, Berlin, pp 257–265

    Chapter  Google Scholar 

  • Hoffman PF (1989) Pethei reef complex (1.9 Ga), Great Slave Lake, N.W.T. In: Geldsetzer HHJ, James NP, Tebbutt GE (eds), Reefs, Canada and adjacent area. Canadian Society of Petroleum Geologists, Memoir 13: 38–48

    Google Scholar 

  • Hofmann HJ (1969) Attributes of stromatolites. Geological Survey of Canada Paper 69-39: 58 pp

    Google Scholar 

  • Hofmann HJ (1971) Precambrian fossils, pseudofossils, and problematica in Canada. Geological Survey of Canada Bulletin 189: 146

    Google Scholar 

  • Hofmann HJ (1973) Stromatolites: characteristics and utility. Earth-Science Reviews 9: 339–373

    Article  Google Scholar 

  • Hofmann HJ (2000) Archean stromatolites as microbial archives. In: Riding RE, Awramik SM (eds) Microbial Sediments. Springer, Berlin, pp 315–327

    Google Scholar 

  • Hofmann HJ, Jackson JD (1987) Proterozoic ministromatolites with radial fibrous fabric. Sedimentology 34: 963–971

    Article  Google Scholar 

  • Hofmann HJ, Grey K, Hickman AH, Thorpe RI (1999) Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geological Society of America Bulletin 111: 1256–1262

    Article  Google Scholar 

  • Holtedahl O (1921) Occurrence of structures like Walcott’s Algonkian algae in the Permian of England. American Journal of Science 1: 195–206

    Article  Google Scholar 

  • Hornemann JW (ed) (1813) Flora Danica, vol. 9, fasc. 25. Hof-Bogtrykker, Nicolaus Miller, Copenhagen

    Google Scholar 

  • Horodyski RJ (1977) Lyngbya mats at Laguna Mormona, Baja California, Mexico; comparison with Proterozoic stromatolites. Journal of Sedimentary Petrology 47: 1305–1320

    Google Scholar 

  • Horodyski RJ (1982) Impressions of algal mats from the Middle Proterozoic Belt Supergroup, northwestern Montana, USA. Sedimentology 29: 285–289

    Article  Google Scholar 

  • Horodyski RJ, Bloeser B (1977) Laminated algal mats from a coastal lagoon, Laguna Mormona, Baja California, Mexico. Journal of Sedimentary Petrology 47: 680–696

    Google Scholar 

  • Horodyski RJ, Vonder Haar SP (1975) Recent calcareous stromatolites from Laguna Mormona (Baja California), Mexico. Journal of Sedimentary Petrology 45: 894–906

    Google Scholar 

  • Jackson MJ (1989) Lower Proterozoic Cowles Lake foredeep reef, N.W.T., Canada. In: Geldsetzer HHJ, James NP, Tebbutt GE (eds), Reefs, Canada and adjacent area. Canadian Society of Petroleum Geologists, Memoir 13: 64–71

    Google Scholar 

  • James NP, Ginsburg RN (1979) Petrography of limestones from the wall and fore-reef. In: James NP, Ginsburg RN (eds) The Seaward Margin of Belize Barrier and Atoll Reefs. IAS Special Publication Number 3. Blackwell, Oxford, pp 111–152

    Google Scholar 

  • James NP, Ginsburg RN, Marszalek DS, Choquette PW (1976) Facies and fabric specificity of early subsea cements in shallow Belize (British Honduras) reefs. Journal of Sedimentary Petrology 46: 523–544

    Google Scholar 

  • James NP, Narbonne GM, Sherman AG (1998) Molartooth carbonates: shallow subtidal facies of the mid- to late Proterozoic. Journal of Sedimentary Research 68(5): 716–722

    Article  Google Scholar 

  • Javor BJ, Castenholz RW (1981) Laminated microbial mats, Laguna Guerrero Negro, Mexico. Geomicrobiology Journal 2: 237–273

    Article  Google Scholar 

  • Johnson JH (1946) Lime-secreting algae from the Pennsylvanian and Permian of Kansas. Geological Society of America Bulletin 57: 1087–1120

    Article  Google Scholar 

  • Jolliffe AW (1955) Geology and iron ores of Steep Rock Lake (Ontario). Economic Geology 50: 373–398

    Article  Google Scholar 

  • Jones B, Hunter IG (1991) Corals to rhodolites to microbialites; a community replacement sequence indicative of regressive conditions. Palaios 6: 54–66

    Article  Google Scholar 

  • Jørgensen BB, Cohen Y (1977) Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats. Limnology and Oceanography 22: 657–666

    Article  Google Scholar 

  • Kah LC, Knoll AH (1996) Microbenthic distribution of Proterozoic tidal flats: environmental and taphonomic considerations. Geology 24: 79–82

    Article  Google Scholar 

  • Kalkowsky E (1908) Oölith und Stromatolith im norddeutschen Buntsandstein. Zeitschrift der Deutschen geologischen Gesellschaft 60: 68–125, pls 4–11

    Google Scholar 

  • Kendall CGStC, Skipwith PAd’E (1968) Recent algal mats of a Persian Gulf lagoon. Journal of Sedimentary Petrology 38: 1040–1058

    Google Scholar 

  • Kerans C (1982) Sedimentology and stratigraphy of the Dismal Lakes Group, Proterozoic, Northwest Territories. PhD thesis, Carleton University, Ottawa, Canada. Unpublished

    Google Scholar 

  • Knoll AH, Golubic S (1979) Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Research 10: 115–151

    Article  Google Scholar 

  • Knoll AH, Semikhatov MA (1998) The genesis and time distribution of two distinctive Proterozoic stromatolite microstructures. Palaios 13: 408–422

    Article  Google Scholar 

  • Komar VA, Raaben ME, Semikhatov MA (1965) Conophyton in the Riphean of the USSR and their stratigraphic importance. Trudy Geological Institute, Leningrad 131: 72 pp, in Russian

    Google Scholar 

  • Kremer B, Kazmierczak J, Stal JL (2008) Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea. Geobiology 6: 46–56

    Google Scholar 

  • Krumbein WE, Cohen Y, Shilo M (1977) Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnology and Oceanography 22: 635–656

    Article  Google Scholar 

  • Land LS (1971) Submarine lithification of Jamaican reefs. In: Bricker OP (ed) Carbonate Cements. Johns Hopkins University Press, Baltimore, pp 59–60

    Google Scholar 

  • Land LS, Goreau TF (1970) Submarine lithification of Jamaican reefs. Journal of Sedimentary Petrology 40: 457–462

    Google Scholar 

  • Land LS, Moore CH (1980) Lithification, micritization and syndepositional diagenesis of biolithites on the Jamaican island slope. Journal of Sedimentary Petrology 50: 357–369

    Google Scholar 

  • Lawson AC (1912) The geology of Steep Rock Lake, Ontario. Geological Survey of Canada Memoir 28: 7–15

    Google Scholar 

  • Lepot K, Benzerara K, Brown GE, Philippot P (2008) Microbially influenced formation of 2,724-million-year-old stromatolites. Nature Geoscience 1: 118–121

    Article  Google Scholar 

  • Lighty RG (1985) Preservation of internal reef porosity and diagenetic sealing of submerged early Holocene barrier reef, southeast Florida shelf. In: Schneidermann N, Harris PM (eds) Carbonate cements. SEPM Special Publication 36: 123–152

    Google Scholar 

  • Linck G (1903) Die Bildung der Oolithe und Rogensteine. Neues Jahrbuch für Mineralogie, Geologie, und Paläontologie 16: 495–513

    Google Scholar 

  • Lindemann RH, Yochelson EL (2005) C.D. Walcott and the Hoyt Limestone: an historic encounter at Saratoga Springs, New York. Northeastern Geology & Environmental Sciences 27: 177–186

    Google Scholar 

  • Logan BW (1961) Cryptozoon and associated stromatolites from the Recent, Shark Bay, Western Australia. Journal of Geology 69: 517–533

    Article  Google Scholar 

  • Logan BW, Rezak R, Ginsburg RN (1964) Classification and environmental significance of algal stromatolites. Journal of Geology 72: 68–83

    Article  Google Scholar 

  • Logan BW, Hoffman P, Gebelein CD (1974) Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. In: Logan BW, Read JF, Hagan GM, Hoffman P, Brown RG, Woods PJ, Gebelein CD (eds) Evolution and diagenesis of quaternary carbonate sequences, Shark Bay, Western Australia. American Association of Petroleum Gelogists Memoir 22: 140–191

    Google Scholar 

  • Lowe DR (1980) Stromatolites 3,400–3,500 Myr old from the Archean of Western Australia. Nature 284: 441–443

    Article  Google Scholar 

  • Lowe DR (1983) Restricted shallow-water sedimentation of early Archean stromatolitic and avaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Precambrian Research 19: 239–283

    Article  Google Scholar 

  • Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga. Geology 22: 387–390

    Article  Google Scholar 

  • Macintyre IG (1977) Distribution of submarine cements in a modern Caribbean fringing reef, Galeta Point, Panama. Journal of Sedimentary Petrology 47: 503–516

    Google Scholar 

  • Macintyre IG (1984) Extensive submarine lithification in a cave in the Belize Barrier Reef Platform. Journal of Sedimentary Petrology 54: 221–235

    Google Scholar 

  • Macintyre IG (1985) Submarine cements – the peloidal question. In: Schneidermann N, Harris PM (eds) Carbonate cements. SEPM Special Publication 36: 109–116. Tulsa, Oklahoma, USA

    Google Scholar 

  • Macintyre IG, Marshall JF (1988) Submarine lithification in coral reefs: some facts and misconceptions. Proceedings 6th International Coral Reef Symposium, Townsville, Australia, 8–12 August 1988, 1: 263–272

    Google Scholar 

  • Macintyre IG, Mountjoy EW, d’Anglejan BF (1968) An occurrence of submarine cementation of carbonate sediments off the west coast of Barbados, W.I. Journal of Sedimentary Petrology 38: 660–664

    Google Scholar 

  • Maliva RG, Missima TM, Leo CL, Statom RA, Dupraz C, Lynn M, Dickson JAD (2000) Unusual calcite stromatolites and pisoids from a landfill leachate collection system. Geology 28: 931–934

    Article  Google Scholar 

  • Malone MJ, Slowey NC, Henderson GM (2001) Early diagenesis of shallow-water periplatform carbonate sediments, leeward margin, Great Bahama Bank (Ocean Drilling Program Leg 166). Geological Society of America Bulletin 113: 881–894

    Article  Google Scholar 

  • Marshall JF (1983) Submarine cementation in a high-energy platform reef; One Tree Reef, southern Great Barrier Reef. Journal of Sedimentary Petrology 53: 1133–1149

    Google Scholar 

  • Marshall, J.F. 1986. Regional distribution of submarine cements within an epicontinental reef system: central Great Barrier Reef, Australia. In: Schroeder JH, Purser BH (eds), Reef Diagenesis. Springer, Berlin, pp 8–26

    Chapter  Google Scholar 

  • Marshall JF, Davies PJ (1981) Submarine lithification on windward reef slopes; Capricorn-Bunker Group, southern Great Barrier Reef. Journal of Sedimentary Petrology 51: 953–960

    Google Scholar 

  • Martindale W (1992) Calcified epibionts as palaeoecological tools: examples from the Recent and Pleistocene reefs of Barbados. Coral Reefs 11: 167–177

    Article  Google Scholar 

  • Martinsson A (1965) Aspects of a Middle Cambrian thanatotope on Öland. Geologiska Föreningens i Stockholm Förhandlingar 87:181–230

    Article  Google Scholar 

  • Matthew GF (1890a) On the existence of organisms in the pre-Cambrian rocks. Natural History Society New Brunswick, Bulletin 2(9): 28–33

    Google Scholar 

  • Matthew GF (1890b) Eozoön and other low organisms in Laurentian rocks at St. John. Natural History Society New Brunswick, Bulletin 2(9): 36–41, 67

    Google Scholar 

  • Mawson D (1929) Some South Australian algal limestones in process of formation. Quarterly Journal of the Geological Society, London 85: 613–620

    Article  Google Scholar 

  • McLoughlin N, Wilson LA, Brasier MD (2008) Growth of synthetic stromatolites and wrinkle structures in the absence of microbes – implications for the early fossil record. Geobiology 6: 95–105

    Article  Google Scholar 

  • Montaggioni LF, Camoin GF (1993) Stromatolites associated with coralgal communities in Holocene high-energy reefs. Geology 21: 149–152

    Article  Google Scholar 

  • Monty C (1965) Recent algal stromatolites in the Windward lagoon, Andros Island, Bahamas. Annales de la Société Géologique de Belgique 88: 269–276

    Google Scholar 

  • Monty C (1967) Distribution and structure of recent stromatolitic algal mats, eastern Andros Island, Bahamas. Société Géologique de Belgique, Annales 90: 55–99

    Google Scholar 

  • Monty C (1972) Recent algal stromatolitic deposits, Andros Island Bahamas. Preliminary report. Geologische Rundschau 61: 742–783

    Article  Google Scholar 

  • Monty C (1976) The origin and development of cryptalgal fabrics. In: Walter MR (ed) Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, pp 193–249

    Chapter  Google Scholar 

  • Monty C (1977) Evolving concepts on the nature and the ecological significance of stromatolites. In: Flügel E (ed) Fossil Algae, Recent Results and Developments. Springer, Berlin, pp 15–35

    Chapter  Google Scholar 

  • Monty C (ed) (1981) Phanerozoic Stromatolites. Springer-Verlag, Berlin, 249 pp

    Google Scholar 

  • Morse JW, Mucci A (1984) Composition of carbonate overgrowths produced on Iceland spar calcite crystals buried in Bahamian carbonate-rich sediments. Sedimentary Geology 40: 287–291

    Article  Google Scholar 

  • Naumann CF (1862) Lehrbuch der Geognosie, Band 2. Engelmann, Leipzig, 1092 pp

    Google Scholar 

  • Nicholson JAM, Stolz JF, Pierson BK (1987) Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiology Letters 45: 343–364

    Article  Google Scholar 

  • Noffke N, Gerdes G, Klenke T, Krumbein, WE (1996) Microbially induced sedimentary structures – examples from modern sediments of siliciclastic tidal flats. Zentralblatt Geologie Paläontologie I (1995) 1/2: 307–316

    Google Scholar 

  • Noffke N, Gerdes G, Klenke T, Krumbein WE (2001) Microbially induced sedimentary structures: a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research 71: 649–656

    Article  Google Scholar 

  • Noffke N, Hazen R, Nhleko N (2003) Earth’s earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan Group, South Africa). Geology 31: 673–676

    Article  Google Scholar 

  • Noffke N, Eriksson KA, Hazen RM, Simpson EL (2006) A new window into Early Archean life: microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34: 253–256

    Article  Google Scholar 

  • Noffke N, Beukes N, Bower D, Hazen RM, Swift DJP (2008) An actualistic perspective into Archean worlds – (cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa. Geobiology 6: 5–20

    Article  Google Scholar 

  • O’Brien C F (1970) Eozoön canadense ‘The dawn animal of Canada’. Isis 61: 206–223

    Article  Google Scholar 

  • Ørsted AS (1842) Beretning om en Excursion til Trindelen, en alluvialdannelse i Odensefjord. Krøyer, Naturhistorisk Tidsskrift 3: 552–569

    Google Scholar 

  • Paul J, Peryt TM (2000) Kalkowsky’s stromatolites revisited (Lower Triassic Buntsandstein, Harz Mountains, Germany). Palaeogeography, Palaeoclimatology, Palaeoecology 161: 435–458

    Article  Google Scholar 

  • Pedley HM (1979) Miocene bioherms and associated structures in the Upper Coralline limestone of the Maltese Islands: their lithification and palaeoenvironment. Sedimentology 26: 577–591

    Article  Google Scholar 

  • Pentecost A (2005) Travertine. Springer, Berlin, 445 pp

    Google Scholar 

  • Perry RS, McLoughlin N, Lynne BY, Sephton MA, Oliver JD, Perry CC, Campbell K, Engel H, Farmer JD, Brasier MD, Staley JT (2007) Defining biominerals and organominerals: direct and indirect indicators of life. Sedimentary Geology 201: 157–179

    Article  Google Scholar 

  • Petrov PYu, Semikhatov MA (2001) Sequence organization and growth patterns of late Mesoproterozoic stromatolite reefs: an example from the Burovaya Formation, Turukhansk Uplift, Siberia. Precambrian Research 111: 257–281

    Article  Google Scholar 

  • Pia J (1927) Thallophyta. In: Hirmer M (ed) Handbuch der Paläobotanik 1. Oldenburg, Munich, pp 31–136

    Google Scholar 

  • Pigott JD, Land LS (1986) Interstitial water chemistry of Jamaican reef sediment: sulfate reduction and submarine cementation. Marine Chemistry 19: 355–378

    Article  Google Scholar 

  • Playford PE, Cockbain AE (1976) Modern algal stromatolites at Hamelin Pool, a hypersaline barred basin in Shark Bay, Western Australia. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 389–411

    Chapter  Google Scholar 

  • Pope MC, Grotzinger JP (2000) Controls on fabric development and morphology of tufas and stromatolites, uppermost Pethei Group (1.8 Ga), Great Slave Lake, northwest Canada. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in the evolving Precambrian world. SEPM Special Publication Number 67: 103–121

    Google Scholar 

  • Pope MC, Grotzinger JP, Schreiber BC (2000) Evaporitic subtidal stromatolites produced by in situ precipitation: textures, facies associations, and temporal significance. Journal of Sedimentary Research 70: 1139–1151

    Article  Google Scholar 

  • Por FD (1967) Solar Lake on the shores of the Red Sea. Nature 218: 860–861

    Article  Google Scholar 

  • Porada H, Bouougri EH (2007) Wrinkle structures – a critical review. Earth Science Reviews 81: 199–215

    Article  Google Scholar 

  • Porada H, Ghergut J, Bouougri EH (2008) Kinneyia-type wrinkle structures – critical review and model of formation. Palaios 23: 65–77

    Article  Google Scholar 

  • Read JF (1976) Calcretes and their distinction from stromatolites. In: Walter MR (ed), Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, pp 55–71

    Chapter  Google Scholar 

  • Reid RP, Macintyre IG, Steneck RS, Browne KM, Miller TE (1995) Stromatolites in the Exuma Cays, Bahamas: uncommonly common. Facies 33: 1–18

    Article  Google Scholar 

  • Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, DesMarais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406: 989–992

    Article  Google Scholar 

  • Reis OM (1908) Kalkowsky: Ueber Oölith und Stromatolith im norddeutschen Buntsandstein. Neues Jahrbuch fiir Mineralogie, Geologie und Paläontologie 2: 114–138

    Google Scholar 

  • Reitner J (1993) Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia). Formation and concepts. Facies 29: 3–39

    Article  Google Scholar 

  • Reitner J, Gautret P, Marin F, Neuweiler F (1995) Automicrites in a modern marine microbialite. Formation model via organic matrices (Lizard Island, Great Barrier Reef, Australia). Bulletin de l’Institut d’Océanographique de Monaco Special Number 14: 237–263

    Google Scholar 

  • Reitner J, Thiel V, Zankl H, Michaelis W, Wörheide G, Gautret P (2000) Organic and biogeochemical patterns in cryptic microbialites. In: Riding RE, Awramik SM (eds) Microbial Sediments, Springer, Berlin, pp 149–160

    Google Scholar 

  • Revsbech NP, Jørgensen BB, Blackburn TH, Cohen Y (1983) Microelectrode studies of photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnology and Oceanography 28: 1062–1074

    Article  Google Scholar 

  • Riding R (1977) Skeletal stromatolites. In: Flügel E (ed) Fossil Algae, Recent Results and Developments. Springer, Berlin, pp 57–60

    Chapter  Google Scholar 

  • Riding R (1991) Classification of microbial carbonates. In: Riding R (ed) Calcareous Algae and Stromatolites. Springer-Verlag, Berlin, pp 21–51

    Chapter  Google Scholar 

  • Riding R (1999) The term stromatolite: towards an essential definition. Lethaia 32: 321–330

    Article  Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47(Suppl 1): 179–214

    Article  Google Scholar 

  • Riding R (2008) Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geologia Croatica 61(2–3): 73–103

    Google Scholar 

  • Riding R, Awramik SM (eds) (2000) Microbial Sediments. Springer, Berlin, 331 pp

    Google Scholar 

  • Riding R, Awramik SM, Winsborough BM, Griffin KM, Dill RF (1991a) Bahamian giant stromatolites: microbial composition of surface mats. Geological Magazine 128: 227–234

    Article  Google Scholar 

  • Riding R, Martín JM, Braga JC (1991b) Coral stromatolite reef framework, Upper Miocene, Almería, Spain. Sedimentology 38: 799–818

    Article  Google Scholar 

  • Roddy HJ (1915) Concretions in streams formed by the agency of blue-green algae and related plants. Proceedings American Philosophical Society 54: 246–258

    Google Scholar 

  • Rothpletz A (1892) Über die Bildung der Oolithe. Botanisches Centralblatt 51: 265–268

    Google Scholar 

  • Sami TT, James NP (1994) Peritidal carbonate platform growth and cyclicity in an early Proterozoic foreland basin, upper Pethei Group, northwest Canada. Journal of Sedimentary Research B64: 111–131

    Google Scholar 

  • Sami TT, James NP (1996) Synsedimentary cements as Paleoproterozoic platform building blocks, Pethei Group, northwestern Canada. Journal of Sedimentary Research 66: 209–222

    Google Scholar 

  • Schieber J (1986) The possible role of benthic microbial mats during the formation of carbonaceous shales in shallow Proterozoic basins. Sedimentology 33: 521–536

    Article  Google Scholar 

  • Schieber J (1998) Possible indicators of microbial mat deposits in shales and sandstones: examples from the mid-Proterozoic Belt Supergroup, Montana, U.S.A. Sedimentary Geology 120: 105–124

    Article  Google Scholar 

  • Schopf JW (1968) Microflora of the Bitter Springs Formation, Late Precambrian, central Australia. Journal of Paleontology 42: 651–688

    Google Scholar 

  • Schopf JW (1999) Cradle of Life: The Discovery of Earth’s Earliest Fossils. Princeton University Press, Princton, New Jersey, USA, 336 pp

    Google Scholar 

  • Schulz E (1936) Das Farbstreifen-Sandwatt und seine Fauna, eine ökologische biozönotische Untersuchung an der Nordsee. Kieler Meeresforschung 1: 359–378

    Google Scholar 

  • Sedgwick A (1829) On the geological relations and internal structure of the Magnesian Limestone, and the lower portions of the New Red Sandstone Series in their range through Nottinghamshire, Derbyshire, Yorkshire, and Durham, to the southern extremity of Northumberland. Transactions of the Geological Society of London, Second Series 3: 37–124

    Article  Google Scholar 

  • Seilacher A (1982) Distinctive features of sandy tempestites. In: Einsele G, Seilacher A (eds) Cyclic and Event Stratification. Springer, Berlin, pp 333–349

    Chapter  Google Scholar 

  • Semikhatov MA, Gebelein CD, Cloud P, Awramik SM, Benmore WC (1979) Stromatolite morphogenesis – progress and problems. Canadian Journal of Earth Science 16: 992–1015

    Article  Google Scholar 

  • Seward AC (1931) Plant Life Through the Ages. Cambridge University Press, Cambridge, 601 pp

    Google Scholar 

  • Sherman CE, Fletcher CH, Rubin KH (1999) Marine and meteoric diagenesis of Pleistocene carbonates from a nearshore submarine terrace, Oahu, Hawaii. Journal of Sedimentary Research 69: 1083–1097

    Article  Google Scholar 

  • Stal LJ (2000) Cyanobacterial mats and stromatolites. In: Whitton BA, Potts M (eds) The Ecology of Cyanobacteria. Their Diversity in Time and Space. Kluwer, Dordrecht, The Netherlands, pp 61–120

    Google Scholar 

  • Steele JH (1825) A description of the Oolitic Formation lately discovered in the county of Saratoga, and state of New-York. American Journal of Science 9: 16–19, part of pl. 2

    Google Scholar 

  • Storrie-Lombardi MC, Corsetti FA, Grigolini P, Ignaccolo M, Allegrini P, Galatolo S, Tinetti G (2004) Complexity analysis to explore the structure of ancient stromatolites. Chaos, Solitons and Fractals 20: 139–144

    Article  Google Scholar 

  • Sumner DY, Grotzinger JP (2000) Late Archean aragonite precipitation: petrography, facies associations, and environmental significance. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in the evolving Precambrian world. SEPM Special Publication Number 67: 123–144

    Google Scholar 

  • Sumner DY, Grotzinger JP (2004) Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani platform, South Africa. Sedimentology 51: 1–27

    Article  Google Scholar 

  • Thrailkill J (1976) Speleothems. In: Walter MR (ed) Stromatolites, Developments in Sedimentology 20. Elsevier, Amsterdam, pp 73–86

    Chapter  Google Scholar 

  • Turner EC, Narbonne GM, James NP (2000) Framework composition of early Neoproterozoic calcimicrobial reefs and associated microbialites, Mackenzie Mountains, N.W.T., Canada. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in the evolving Precambrian world. SEPM Special Publication Number 67: 179–205

    Google Scholar 

  • Tyler SA, Barghoorn ES (1954) Occurrence of structurally preserved plants in Pre-Cambrian rocks of the Canadian Shield. Science 119: 606–608

    Article  Google Scholar 

  • van Gemerden H (1993) Microbial mats: a joint venture. Marine Geology 113: 3–25

    Article  Google Scholar 

  • Vidal G (1972) Algal stromatolites from the Late Precambrian of Sweden. Lethaia 5: 353–367

    Article  Google Scholar 

  • Visscher PT, Reid RP, Bebout BM (2000) Microscale observation of sulphate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28: 919–922

    Article  Google Scholar 

  • Vologdin AG (1962) The Oldest Algae of the USSR. Academy of Sciences of the USSR, Moscow, 657 pp, in Russian

    Google Scholar 

  • Walcott CD (1895) Algonkian rocks of the Grand Canyon. Journal of Geology 3: 312–330

    Article  Google Scholar 

  • Walcott CD (1906) Algonkian formations of northwestern Montana. Geological Society of America Bulletin 17: 1–28

    Google Scholar 

  • Walcott CD (1912) Notes on fossils from limestone of Steeprock series, Ontario. Geological Survey Canada Memoir 28: 16–23

    Google Scholar 

  • Walcott CD (1914) Cambrian geology and paleontology III: Precambrian Algonkian algal flora. Smithsonian Miscellaneous Collection 64: 77–156

    Google Scholar 

  • Walter MR (1972) Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian. Special Papers in Palaeontology 11: 190

    Google Scholar 

  • Walter MR (ed) (1976a) Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, 790 pp

    Google Scholar 

  • Walter MR (1976b) Introduction. In: Walter MR (ed) Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, pp 1–3

    Chapter  Google Scholar 

  • Walter MR (1976c) Geyserites of Yellowstone National Park: an example of abiogenic “stromatolites”. In: Walter MR (ed) Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, pp 87–112

    Chapter  Google Scholar 

  • Walter MR, Golubic S, Preiss WV (1973) Recent stromatolites from hydromagnesite and aragonite depositing lakes near the Coorong Lagoon, South Australia. Journal of Sedimentary Petrology 43: 1021–1030

    Google Scholar 

  • Walter MR, Bauld J, Brock TD (1976) Microbiology and morphogenesis of columnar stromatolites (Conophyton, Vacerrilla) from hot springs in Yellowstone National Park. In M.R. Walter (ed) Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, pp 273–310

    Chapter  Google Scholar 

  • Walter MR, Buick R,Dunlop JSR (1980) Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284: 443–445

    Article  Google Scholar 

  • Webb GE, Baker JC, Jell JS (1998) Inferred syngenetic textural evolution in Holocene cryptic reefal microbialites, Heron Reef, Great Barrier Reef, Australia. Geology 26: 355–358

    Article  Google Scholar 

  • Whittle GL, Kendall CGStC, Dill RF, Rouch L (1993) Carbonate cement fabrics displayed: a traverse across the margin of the Bahamas platform near Lee Stocking Island in the Exuma Cays. Marine Geology 110: 213–243

    Article  Google Scholar 

  • Wilks ME, Nisbet EG (1985) Archaean stromatolites from the Steep Rock Group, northwestern Ontario, Canada. Canadian Journal of Earth Sciences 22: 792–799

    Article  Google Scholar 

  • Wiman C (1915) Om Visingsö -kalkstenen vid Gränna. Geol Foren i Stockholm Förh 37: 367–375

    Article  Google Scholar 

  • Zankl H (1993) The origin of high-Mg-calcite microbialites in cryptic habitats of Caribbean coral reefs – their dependence on light and turbulence. Facies 29: 55–60

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to Joachim Reitner and the Organizing Committee for supporting my participation in the 2008 Kalkowsky Symposium. Brian Chatterton and Eric Mountjoy generously provided photographs of Eozoön and Shark Bay columns, respectively, and Jody Webster a thin-section of reef crust from Kohala, Hawaii. Canadian Society of Petroleum Geologists kindly gave permission to reproduce Fig.15. I am indebted to Phil Fralick, Dawn Sumner and Pieter Visscher, respectively, for showing me the Gunflint, Campbellrand-Malmani, and Lagoa Pitanguinha localities. Gernot Arp and Joachim Reitner made helpful suggestions that improved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Riding .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Riding, R. (2011). The Nature of Stromatolites: 3,500 Million Years of History and a Century of Research. In: Advances in Stromatolite Geobiology. Lecture Notes in Earth Sciences, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10415-2_3

Download citation

Publish with us

Policies and ethics