Skip to main content

Tolypammina gregaria Wendt 1969-Frutexites Assemblage and Ferromanganese Crusts: A Coupled Nutrient-Metal Interplay in the Carnian Sedimentary Condensed Record of Hallstatt Facies (Austria)

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 131))

Abstract

Foraminifera are the most abundant sessile organisms found on ferromanganese crusts and nodules (Greenslate 1974; Wendt 1974; Dugolinsky et al. 1977; Riemann 1983; von Stackelberg 1984; Mullineaux 1987, 1988; Verlaan 1992; Resig and Glenn 1997; Toscano and Raspini 2005). In fact, actual ferromanganesecrusts and nodules share numerous similarities with their fossil counterparts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allouc J (1990) Quaternary crusts on slopes of Mediterranean Sea: a tentative explanation for their genesis. Marine Geology 94:205–238

    Article  Google Scholar 

  • Altenbach AV (1992) Short term processes and patterns in the foraminiferal response to organic flux rates. Marine Micropaleontology 19:119–129

    Article  Google Scholar 

  • Andersson JH, Woulds C, Shwartz M, Cowie GL, Levin LA, Soetaert K, Middelburg JJ (2007) Short-term fate of phytodetritus across the Arabian Sea oxygen minimum zone. Biogeosciences Discussion 4:2493–2523

    Article  Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrade effect. Contributions to Mineralogy and Petrology 123:323–333

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research 79:37–55

    Article  Google Scholar 

  • Bellanca A, Di Stefano P, Neri R (1995) Sedimentology and isotope geochemistry of Carnian deep-water marl/limestone deposits from the Sicani Mountains, Sicily: environmental implications and evidence for planktonic source of lime mud. Palaeogeography, Palaeoclimatology, Palaeoecology 114:111–129

    Article  Google Scholar 

  • Böhm F, Brachert TC (1993) Deep-water stromatolites and Frutexites Maslov from the Early and Middle Jurassic of S-Germany and Austria. Facies 28:145–168

    Article  Google Scholar 

  • Bonatti E (1981) Metal deposits in the oceanic lithosphere. In: Emiliani C (ed) The sea, vol VII. Wiley, New York, pp 241–283

    Google Scholar 

  • Burnett BR, Nealson KH (1981) Organic films and microorganisms associated with manganese nodules. Deep Sea Research 28A:637–645

    Google Scholar 

  • Cavalazzi B, Barbieri R, Ori G (2007) Chemosynthetic microbialites in the Devonian carbonate mounds of Hamar Laghdad (Anti-Atlas, Morocco). Sedimentary Geology 200:73–88

    Article  Google Scholar 

  • Chafetz HS, Akdim B, Julia R, Reid A (1998) Mn- and Fe-rich black travertine shrubs: bacterially (and nanobacterially) induced precipitates. Journal of Sedimentary Research 68:404–412

    Article  Google Scholar 

  • Corliss BH, Brown CW, Sun X, Showers WJ (2009) Deep-sea benthic diversity linked to seasonality of pelagic productivity. Deep Sea Research I 56:835–841

    Article  Google Scholar 

  • Den Dulk M, Reichart GJ, Memon GA, Roelofs EMP, Zachariasse WJ, Van der Zwaan GJ (1998) Benthic foraminiferal response to variations in intensity of oxygen minimum zone in the northeast Arabian Sea. Marine Micropaleontology 35:43–66

    Article  Google Scholar 

  • Donaghay PL, Liss PS, Duce RA, Kester DR, Hanson AK, Villareal T, Tindale NW, Gifford DJ (1991) The role of episodic atmospheric nutrient inputs in the chemical and biological dynamics of the oceanic ecosystems. Oceanography 4:62–70

    Article  Google Scholar 

  • Dugolinsky BK, Margolis SV, Dudley WC (1977) Biogenic influence on growth of manganese nodules. Journal of Sedimentary Research 47:428–445

    Google Scholar 

  • Dymond J, Lyle M, Finney B, Piper DZ, Murphy K, Conard R, Pisias N (1984) Ferromanganese nodules from MANOP Sites H, S, and R – Control of mineralogical and chemical composition by multiple accretionary processes. Geochimica et Cosmochimica Acta 48:931–949

    Article  Google Scholar 

  • Ehrlich HL (1963) Bacteriology of manganese nodules. I. Bacterial action on manganese in nodule enrichments. Applied and Environmental Microbiology 11:15–19

    Google Scholar 

  • Ehrlich HL (1968) Bacteriology of manganese nodules. II. Manganese oxidation by cell-free extract from a manganese nodule bacterium. Applied and Environmental Microbiology 16:197–202

    Google Scholar 

  • Ehrlich HL (1971) Bacteriology of manganese nodules. V. Effect of hydrostratic pressure on bacterial oxidation of MnII and reduction of MnO2. Applied and Environmental Microbiology 21:306–310

    Google Scholar 

  • Elderfield H, Greaves MJ (1981) Negative Cerium anomalies in the rare earth element pattern of oceanic ferromanganese nodules. Earth and Planetary Science Letters 55:163–170

    Article  Google Scholar 

  • Gawlick HJ (2000) Paläogeographie der Obertrias-Karbonatplattformen in den Nördlichen Kalkalpen. Mitteilungen der Österreichischen Geologischen Gesellschaft 44:45–95

    Google Scholar 

  • Ghiorse WC (1984) Biology of iron- and manganese-depositing bacteria. Annual Review of Microbiology 38:515–550

    Article  Google Scholar 

  • Ghiorse WC, Ehrlich HL (1992) Microbial biomineralization of iron and manganese. In: Skinner HCW, Fitzpatrick RW, (eds) Biomineralization processes of iron and manganese: modern and ancient environments. Catena Verlag, Cremlingen-Destedt, pp 75–99

    Google Scholar 

  • Gischler E (1996) Late Devonian-Early Carboniferous deep-water coral assemblages and sedimentation on a Devonian seamount: Iberg Reef, Harz Mts., Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 123:297–322

    Article  Google Scholar 

  • Gooday AJ (1988) A response to benthic Foraminifera to the deposition of phytodetritus in the deep sea. Nature 332:70–73

    Article  Google Scholar 

  • Gooday AJ, Levin L, Linke P, Heeger T (1992) The role of benthic foraminifera in deep-sea food webs and carbon cycling. In: Rowe GP (ed) Deep-sea food chains and the global carbon cycling. Kluwer Academic Publisher, The Netherlands, pp 63–91

    Chapter  Google Scholar 

  • Gooday AJ, Bernhard JM, Levin LA, Suhr S (2000) Foraminifera in the Arabian Sea oxygen minimum zone and other deficient settings: taxonomic composition, diversity and relation to metazoan faunas. Deep Sea Research II 57:25–54

    Article  Google Scholar 

  • Graf G (1989) Benthic-pelagic coupling in a deep-sea benthic community. Nature 341:437–439

    Article  Google Scholar 

  • Graham JW, Cooper SC (1959) Biological origin of manganese-rich deposits of the sea floor. Nature 183:1050–1051

    Article  Google Scholar 

  • Greenslate J (1974) Microorganisms participate in the construction of manganese nodules. Nature 649:181–183

    Article  Google Scholar 

  • Hanson AK, Tindale NW, Abdel-Moati MAR (2001) An Equatorial Pacific rain event: influence on the distribution of iron and hydrogen peroxide in surface waters. Marine Chemistry 75:69–88

    Article  Google Scholar 

  • Hein JR, Bohrson WA, Shulz MS, Noble M, Clague DA (1992) Variations in the fine-scale composition of a central Pacific ferromanganese crust: paleooceanographic implications. Paleooceanography 7:63–77

    Article  Google Scholar 

  • Hein JR, Yeh H-W, Gunn SH, Gibbs AE, Wang C-H (1994) Composition of hydrothermal ironstones from central Pacific seamounts. Geochimica et Cosmochimica Acta 58:179–189

    Article  Google Scholar 

  • Hofmann HJ, Grotzinger JP (1985) Shelf-facies microbiotas from the Odjick and Rocknest formations (Epworth Group; 1.89 Ga), northwestern Canada. Canadian Journal of Earth Sciences 22:1781–1792

    Article  Google Scholar 

  • Hornung T, Brandner R (2005) Biochronostratigraphy of the Reingraben Turnover (Hallstatt Facies belt): local black shale events controlled by regional, tectonics, climatic change and plate tectonics. Facies 2005:460–479

    Article  Google Scholar 

  • Hornung T, Krystyn L, Brandner R (2007a) A Tethys-wide mid-Carnian (Upper Triassic) carbonate productivity crisis: evidence for the Alpine Reingraben Event from Spiti (Indian Himalaya). Journal of Asian Earth Sciences 30:285–302

    Article  Google Scholar 

  • Hornung T, Spatzenegger A, Joachimski MM (2007b) Multistratigraphy of condensed ammonoid beds of the Rappolstein (Berchtesgaden, southern Germany): unravelling palaeoenvironmental conditions on ‘Hallstatt deep swells’ during Reingraben Event (Late Lower Carnian). Facies 53:267–292

    Article  Google Scholar 

  • Jenkyns HC (1970) Fossil manganese nodules from the West Sicilian Jurassic. Eclogae Geologicae Helvetiae 63:741–774

    Google Scholar 

  • Jiménez-Millán J, Nieto LM (2006) Geochemical and mineralogical evidence of tectonic and sedimentary factors controlling the origin of ferromanganese crusts associated to stratigraphic discontinuities (Betic Cordilleras, SE Spain). Chemie der Erde 68:323–336

    Article  Google Scholar 

  • Jones B, Manning DAC (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology 111:111–129

    Article  Google Scholar 

  • Jorissen FJ, de Stigter HC, Widmark JGV (1995) A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology 22:3–15

    Article  Google Scholar 

  • Kazmierczak J, Kempe S (2006) Modern analogues of Precambrian stromatolites from caldera lakes of Niuafo'ou Island, Tonga. Naturwissenschaften 93:119–126

    Article  Google Scholar 

  • Konhauser KO (1998) Diversity of bacterial iron mineralization. Earth Science Reviews 43:91–121

    Article  Google Scholar 

  • Koschinsky A, Stascheit A, Bau M, Halbach P (1997) Effects on phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts. Geochimica et Cosmochimica Acta 19:4079–4094

    Article  Google Scholar 

  • Krystyn L (1991) Die Fossillagerstätten der alpinen Trias. In: Vasicek V, Krystyn L, Golebiowski R (eds) Exkursionen im Jungpaläozoikum und Mesozoikum Österreichs, Exkusionsführer Tagung der Österreichischen Paläontologischen Gesellschaft, Wien, pp 23–78

    Google Scholar 

  • Kuma K, Matsuga K (1995) Availability of colloidal ferric oxides to coastal marine phytoplankton. Marine Biology 122:1–11

    Article  Google Scholar 

  • Larkin KE, Gooday AJ (2009) Foraminiferal faunal responses to monsoon-driven changes in organic matter and oxygen availability at 140 m and 300 m water depth in the NE Arabian Sea. Deep Sea Research II 56:403–421

    Article  Google Scholar 

  • Levin L, Gutiérraz D, Rathburn A, Neira C, Sellanes J, Muños Gallardo V, Salamanca M (2002) Benthic processes on the Peru margin: a transect across the oxygen minimun zone during the 1997–98 El Niño. Progress in Oceanography 53:1–27

    Article  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York

    Google Scholar 

  • Mamet B, Préat A (2006) Iron-bacteria mediation in Phanerozoic red limestones: state of the art. Sedimentary Geology 185:147–157

    Article  Google Scholar 

  • Mandl GW (2000) The Alpine sector of the Tethyan shelf: examples of Triassic to Jurassic sedimentation and deformation from the Northern Calcareous Alps. Mitteilungen der Österreichischen Geologischen Gesellschaft 92:61–79

    Google Scholar 

  • Margolis SV, Burns RG (1976) Pacific deep-sea manganese nodules: their distribution, composition and origin. Annual Review of Earth and Planetary Sciences 4:229–263

    Article  Google Scholar 

  • Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the northeast Pacific subarctic. Nature 331:341–343

    Article  Google Scholar 

  • Maslov VP (1960) Stromatolity (ick genezis, metodizucheniya, svjaz’s fatsiyami i geologicheskoe znachenie na primere Ordovika Sibirskoj Plataformy). Trudy Instituta Geologii Akademiia nauk SSSR 41:1–188

    Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR McKay GA (eds) Geochemistry and Mineralogy of Rare Earth Elements. Reviews in Mineralogy 21:169–200

    Google Scholar 

  • Millero FJ, Wensheng Y, Aicher J (1995) The speciation of Fe(II) and Fe(III) in natural waters. Marine Chemistry 50:21–39

    Article  Google Scholar 

  • Moodley L, Boschker HTS, Middelburg JJ, Pel R, Herman PMJ, de Deckere E, Heip C (2000) Ecological significance of benthic foraminifera: 13+C labelling experiments. Marine Ecology Progress Series 202:289–295

    Article  Google Scholar 

  • Moodley L, Middelbrug JJ, Boschker HTS, Duineveld GCA, Pel R, Herman PMJ, Heip CHR (2002) Bacteria and Foraminifera: key players in a short-term deep-sea benthic response to phytodetritus. Marine Ecology Progress Series 236:23–29

    Article  Google Scholar 

  • Mullineaux LS (1987) Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites. Deep Sea Research 34:165–184

    Article  Google Scholar 

  • Mullineaux LS (1988) Taxonomic notes on large agglutinated foraminifers encrusting manganese nodules, including the description of a new genus, Chondrodapis (Komokiacea). Journal of Foraminiferal Research 18:46–53

    Article  Google Scholar 

  • Mullineaux LS (1989) Vertical distribution of the epifauna on manganese nodules: implications for settlement and feeding. Limnology and Oceanography 34:1247–1262

    Article  Google Scholar 

  • Mullineaux LS, Butman CA (1990) Recruitment of encrusting benthic invertebrates in boundary-layer flows: a deep-water experiment on Cross Seamount. Limnology and Oceanography 35:409–423

    Article  Google Scholar 

  • Mutti M, Weissert H (1995) Triassic monsoonal climate and its signature in Ladinian-Carnian carbonate platforms (Southern Alps, Italy). Journal of Sedimentary Research B65:357–367

    Google Scholar 

  • Myrow PM, Coniglio M (1991) Origin and diagenesis of cryptobiontic Frutexites in the Chapel island Formation (Vendian to Early Cambrian) of Southeast Newfoundland, Canada. Palaios 6:572–585

    Article  Google Scholar 

  • Nelson KH, Tebo B (1980) Structural features on manganese precipitating bacteria. Origins Life 10:117–126

    Article  Google Scholar 

  • Playford PE, Cockbain AE, Druce EC, Wray JL (1976) Devonian stromatolites from the Canning Basin, Westerns Australia. In: Walter MR (ed) Stromatolites, Developments in sedimentology 20. Elsevier, Amsterdam, pp 543–463

    Chapter  Google Scholar 

  • Playford PE, McLaren DJ, Orth C, Gilmore JS, Goodfellow WD (1984) Iridium anomaly in the Upper Devonian of the Canning Basin, Western Australia. Science 226:437–439

    Article  Google Scholar 

  • Puteanus D, Halbach P (1988) Correlation of Co concentration and growth rate – a method for age determination of ferromanganese crusts. Chemical Geology 69:73–85

    Article  Google Scholar 

  • Reitner J, Wilmsen M, Neuweiler F (1995) Cenomanian/Turonian sponge microbialite deep-water hardground community (Liencres, Northern Spain). Facies 32:203–212

    Article  Google Scholar 

  • Resig JM, Glenn CR (1997) Foraminifera encrusting phosphoritic hardgrounds of the Peruvian upwelling zone: taxonomy, geochemistry and distribution. Journal of Foraminiferal Research 27:133–150

    Article  Google Scholar 

  • Riding R (1991) Calcified Cyanobacteria. In: Riding R (ed) Calcareous algae and stromatolites, Springer, Berlin, pp 55–87

    Chapter  Google Scholar 

  • Riemann F (1983) Biological aspects of deep-sea manganese nodule formation. Oceanologica Acta 6:303–311

    Google Scholar 

  • Rigo M, Preto N, Roghi G, Tateo F, Mietto P (2007) A rise in the Carbonate Compensation Depth of western Thetys in the Carnian (Late Triassic): deep-water evidence for the Carnian Pluvial Event. Palaeogeography, Palaeoclimatology, Palaeoecology 246:188–205

    Article  Google Scholar 

  • Schlager W (1969) Das Zusammenwirken von Sedimentation und Bruchtektonik in den triadischen Hallstätterkalken der Ostalpen. Geologische Rundschau 59:289–308

    Article  Google Scholar 

  • Schönfeld J (2002) Recent benthic foraminiferal assemblages in deep high energy environments from the Gulf of Cadiz. Marine Micropaleontology 44:141–162

    Article  Google Scholar 

  • Schönfeld J, Numberger L (2007) The benthic foraminiferal response to the 2004 spring bloom in the western Baltic Sea. Marine Micropaleontology 65:78–95

    Article  Google Scholar 

  • Segl M, Mangini A, Bonani G, Hofmann G, Nessi M, Sutter M, Wölfi W, Friedrich G, Plüger W, Wiechowski A, Beer J (1984) 10Be dating of manganese crust from central North Pacific and implications for ocean paleocirculation. Nature 309:540–543

    Article  Google Scholar 

  • Sen Gupta BK, Smith LE, Lobegeier MK (2007) Attachment of Foraminifera to vestimentiferan tubeworms at cold seeps: refuge from seafloor hypoxia and sulfide toxicity. Marine Micropaleontology 62:1–6

    Article  Google Scholar 

  • Simms MJ, Johnson ALA, Ruffel A (1994) Biotic and climatic change in the Carnian (Triassic of Europe and adjacent areas). In: Fraser N, Sues HD (eds) In the shadow of the dinosaurs. Cambridge University Press, Cambridge, pp 352–365

    Google Scholar 

  • Snider LJ, Burnett BR, Hessler RR (1984) The composition and distribution of meiofauna and nanobiota in a central North Pacific deep-sea area. Deep Sea Research 31:1225–1249

    Article  Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters 196:17–33

    Article  Google Scholar 

  • Strekopytov S, Dubinin A, Uspenskaya T (2000) Geochemical and mineralogical studies of Fe–Mn Nodules and crusts from the White Sea: potential role of benthic fauna in their formation. Goldschmidt 2000, Journal of Conference Abstracts 5(2):963

    Google Scholar 

  • Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences 32:287–328

    Article  Google Scholar 

  • Toscano F, Raspini A (2005) Epilithozoan fauna associated with ferromanganese crustgrounds on the continental slope segment between Capri and Li Galli Islands (Bay of Salerno, Northern Tyrrehenian Sea, Italy). Facies 50:427–441

    Article  Google Scholar 

  • Tsien HH (1979) Paleoecology of algal-bearing facies in the Devonian (Couvirtian to Frasnian) Reef Complexes of Belgium. Palaeogeography, Palaeoclimatology, Palaeoecology 27:103–127

    Article  Google Scholar 

  • Tucker ME (1973) Ferromanganese nodules from the Devonian of the Montagne Noire (S. France) and the West Germany. Geologische Rundschau 62:137–153

    Article  Google Scholar 

  • Uematsu M, Duce RA, Prospero JM (1985) Deposition of atmospheric mineral particles in the North Pacific Ocean. Journal of Atmospheric Chemistry 3:123–138

    Article  Google Scholar 

  • Van der Zwaan GJ, Duijnstee IAP, Dulk D, Ernst SR, Jannink NT, Kouwenhoven TJ (1999) Benthic foraminifers: proxies or problems? A review of paleoecological concepts. Earth Science Reviews 46:213–239

    Article  Google Scholar 

  • Verlaan PA (1992) Benthic recruitment and manganese crust formation on seamounts. Marine Biology 113:171–174

    Article  Google Scholar 

  • von Mojsisovics E (1873–1902) Das Gebirge um Hallstatt I. Abhandlungen der Geologischen Reichsanstalt 6/1:356

    Google Scholar 

  • von Stackelberg U (1984) Significance of benthic organisms for the growth and movement of manganese nodules, Equatorial North Pacific. Geo-Marine Letters 4:37–42

    Article  Google Scholar 

  • Walter MR, Awramik SM (1979) Frutexites from stromatolites of Gunflint iron formation of Canada, and its biological affinities. Precambrian Research 9:23–33

    Article  Google Scholar 

  • Wang W, Schröder HC, Wiens M, Schloßmacher U, Müller WEG (2009) Manganese/polymetallic nodules: micro-structural characterization of exolithobiontic- and endolithobionthic microbial biofims by scanning electron microscopy. Micron 40:350–358

    Article  Google Scholar 

  • Wells ML, Zorkin NG, Lewis AG (1983) The role of colloidal chemistry in providing a source of iron to phytoplankton. Journal of Marine Research 41:731–746

    Article  Google Scholar 

  • Wells ML, Price NM, Bruland KW (1995) Iron chemistry in seawater and its relationship to phytoplankton: a workshop report. Marine Chemistry 48:157–158

    Article  Google Scholar 

  • Wendt J (1969) Foraminiferen-‘Riffe’ im karnischen Hallstätter Kalk des Feuerkogels (Steiermark, Österreich). Paläontologische Zeitschrift 43:177–193

    Google Scholar 

  • Wendt J (1970) Stratigraphische Kondensation in triadischen und jurassischen Cephalopoden-kalken der Tethys. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1970/7:433–448

    Google Scholar 

  • Wendt J (1974) Encrusting organisms in deep-sea manganese nodules. In: Hsü KJ, Jenkyns HC (eds) Pelagic sediments: on land and under sea, International Association of Sedimentologists, Special Publication 1. Blackwell, Oxford, London, Edinburgh, Melbourne, pp 437–447

    Google Scholar 

Download references

Acknowledgments

We thank to Jose Castillejo grant program from Universidad de Alcalá. This investigation was gratefully supported by the Deutsche Forschungsgemeinschaft Research Unit FOR 571 Geobiology of Organo- and Biofilms, publication no. 51.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Rodríguez-Martínez .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Rodríguez-Martínez, M., Heim, C., Simon, K., Zilla, T., Reitner, J. (2011). Tolypammina gregaria Wendt 1969-Frutexites Assemblage and Ferromanganese Crusts: A Coupled Nutrient-Metal Interplay in the Carnian Sedimentary Condensed Record of Hallstatt Facies (Austria). In: Advances in Stromatolite Geobiology. Lecture Notes in Earth Sciences, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10415-2_25

Download citation

Publish with us

Policies and ethics