Variety Is the Spice of (Virtual) Life

  • Carol O’Sullivan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5884)


Before an environment can be populated with characters, a set of models must first be acquired and prepared. Sometimes it may be possible for artists to create each virtual character individually - for example, if only a small number of individuals are needed, or there are many artists available to create a larger population of characters. However, for most applications that need large and heterogeneous groups or crowds, more automatic methods of generating large numbers of humans, animals or other characters are needed. Fortunately, depending on the context, it is not the case that all types of variety are equally important. Sometimes quite simple methods for creating variations, which do not over-burden the computing resources available, can be as effective as, and perceptually equivalent to, far more resource-intensive approaches. In this paper, we present some recent research and development efforts that aim to create and evaluate variety for characters, in their bodies, faces, movements, behaviours and sounds.


Computer Animation Virtual Character Virtual Human Crowd Simulation Facial Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. In: ACM SIGGRAPH 2003, pp. 587–594 (2003)Google Scholar
  2. 2.
    Allen, B., Curless, B., Popović, Z., Hertzmann, A.: Learning a correlated model of identity and pose-dependent body shape variation for real-time synthesis. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 147–156 (2006)Google Scholar
  3. 3.
    Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. ACM Transactions on Graphics 24(3), 408–416 (2005)CrossRefGoogle Scholar
  4. 4.
    Black, A.W., Zen, H., Tokuda, K.: Statistical parametric speech synthesis. In: Acoustics, Speech and Signal Processing, 2007, vol. 4, pp. IV–1229–IV–1232 (2007)Google Scholar
  5. 5.
    Brand, M., Hertzmann, A.: Style machines. In: ACM SIGGRAPH 2000, pp. 183–192 (2000)Google Scholar
  6. 6.
    Braun, A., Musse, S.R., de Oliveira, L.P.L., Bodmann, B.E.J.: Modeling individual behaviors in crowd simulation. In: Computer Animation and Social Agents (CASA 2003), p. 143. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  7. 7.
    De Heras, C.P., Schertenleib, S., Mäim, J., Thalmann, D.: Real-time shader rendering for crowds in virtual heritage. In: Proceedings of the 6th international Symposium on Virtual Reality, Archeology and Cultural Heritage (VAST 2005), pp. 1–8 (2005)Google Scholar
  8. 8.
    De Heras, C.P., Schertenleib, S., Mäim, J., Thalmann, D.: Reviving the roman odeon of aphrodisias: Dynamic animation and variety control of crowds in virtual heritage. In: VSMM: Virtual Systems and Multimedia, pp. 601–610 (2005)Google Scholar
  9. 9.
    Dobbyn, S., Hamill, J., O’Conor, K., O’Sullivan, C.: Geopostors: a real-time geometry / impostor crowd rendering system. ACM Transactions on Graphics 24(3), 933 (2005)CrossRefGoogle Scholar
  10. 10.
    Dobbyn, S., McDonnell, R., Kavan, L., Collins, S., O’Sullivan, C.: Clothing the masses: Real-time clothed crowds with variation. In: Eurographics Short Papers, pp. 103–106 (2006)Google Scholar
  11. 11.
    Durupinar, F., Allbeck, J., Pelechano, N., Badler, N.: Creating crowd variation with the ocean personality model. In: AAMAS 2008: Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems, pp. 1217–1220 (2008)Google Scholar
  12. 12.
    Ennis, C., Peters, C., O’Sullivan, C.: Perceptual evaluation of position and orientation context rules for pedestrian formations. In: APGV 2008: Proceedings of the 5th symposium on Applied perception in graphics and visualization, pp. 75–82 (2008)Google Scholar
  13. 13.
    Galli, P.: Madagascar tech turns imagination into reality (2005),
  14. 14.
    Galvao, R., Laycock, R., Day, A.M.: Gpu techniques for creating visually diverse crowds in real-time. In: VRST 2008: Proceedings of the 2008 ACM symposium on Virtual reality software and technology, pp. 79–86 (2008)Google Scholar
  15. 15.
    Giese, M., Poggio, T.: Morphable models for the analysis and synthesis of complex motion patterns. International Journal of Computer Vision 38(1), 59–73 (2000)zbMATHCrossRefGoogle Scholar
  16. 16.
    Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., Seidel, H.-P.: A statistical model of human pose and body shape. Computer Graphics Forum (Eurographics 2009) 28(2), 337–346 (2009)CrossRefGoogle Scholar
  17. 17.
    Heck, R., Kovar, L., Gleicher, M.: Splicing upper-body actions with locomotion. Computer Graphics Forum (Eurographics 2006) 25(3), 459–466 (2006)CrossRefGoogle Scholar
  18. 18.
    Hsu, E., Pulli, K., Popović, J.: Style translation for human motion. ACM Transactions on Graphics (SIGGRAPH 2005) 24(3), 1082–1089 (2005)CrossRefGoogle Scholar
  19. 19.
    Jarudi, I.N., Sinha, P.: Relative contributions of internal and external features to face recognition. Technical Report CBCL Paper #225/AI Memo #2003-004, Massachusetts Institute of Technology (2003)Google Scholar
  20. 20.
    McDonnell, R., Ennis, C., Dobbyn, S., O’Sullivan, C.: Talking bodies: Sensitivity to de-synchronisation of conversations, vol. 6(4) (to appear, 2009)Google Scholar
  21. 21.
    McDonnell, R., Jörg, S., Hodgins, J.K., Newell, F., O’Sullivan, C.: Evaluating the effect of motion and body shape on the perceived sex of virtual characters. TAP 5(4), 1–14 (2009)CrossRefGoogle Scholar
  22. 22.
    McDonnell, R., Larkin, M., Dobbyn, S., Collins, S., O’Sullivan, C.: Clone attack! perception of crowd variety. ACM Transactions on Graphics (SIGGRAPH 2008) 27(3) (2008)Google Scholar
  23. 23.
    McDonnell, R., Larkin, M., Hernández, B., Rudomín, I., O’Sullivan, C.: Eye-catching crowds: saliency based selective variation. ACM Transactions on Graphics (SIGGRAPH 2009) 28(3) (2009)Google Scholar
  24. 24.
    Moeck, T., Bonneel, N., Tsingos, N., Drettakis, G., Viaud-Delmon, I., Alloza, D.: Progressive perceptual audio rendering of complex scenes. In: I3D 2007: Proceedings of the 2007 symposium on Interactive 3D graphics and games, pp. 189–196 (2007)Google Scholar
  25. 25.
    Paris, S., Donikian, S.: Activity-driven populace: a cognitive approach for crowd simulation. IEEE Computer Graphics and Applications (Virtual Populace special issue) 29(4), 34–43 (2009)CrossRefGoogle Scholar
  26. 26.
    Paris, S., Donikian, S., Bonvalet, N.: Environmental abstraction and path planning techniques for realistic crowd simulation. Computer Animation and Virtual Worlds 17, 325–335 (2006)CrossRefGoogle Scholar
  27. 27.
    Peters, C., Ennis, C.: Modelling groups of plausible virtual pedestrians. IEEE Computer Graphics and Applications (Virtual Populace special issue) 29(4), 54–63 (2009)CrossRefGoogle Scholar
  28. 28.
    Seo, H., Cordier, F., Magnenat-Thalmann, N.: Synthesizing animatable body models with parameterized shape modifications. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 120–125 (2003)Google Scholar
  29. 29.
    Sinha, P., Balas, B., Ostrovsky, Y., Russell, R.: Face recognition by humans: 19 results all computer vision researchers should know about. Proceedings of the IEEE 94(11), 1948–1962 (2006)CrossRefGoogle Scholar
  30. 30.
    Tecchia, F., Loscos, C., Chrysanthou, Y.: Visualizing crowds in real-time. Computer Graphics Forum (Eurographics 2002) 21(4), 753–765 (2002)CrossRefGoogle Scholar
  31. 31.
    Tsingos, N., Gallo, E., Drettakis, G.: Perceptual audio rendering of complex virtual environments. In: ACM SIGGRAPH 2004, pp. 249–258 (2004)Google Scholar
  32. 32.
    Ulicny, B., Thalmann, D.: Towards interactive real-time crowd behavior simulation. Computer Graphics Forum 21(4), 767–775 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carol O’Sullivan
    • 1
  1. 1.GV2: Graphics, Vision and Visualisation GroupTrinity College Dublin 

Personalised recommendations