Simulation and modeling of light scattering in paper and print applications

Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

When developing and applying models to light scattering problems, things usually turn very mathematical. This is all in good order, but it may also be a hindrance for a broader audience to gain insight into the overall issues. This chapter aims at discussing a range of light scattering simulation and modeling issues with a minimum of mathematics involved, and with the specific perspective of paper and printing industry applications. Shorter sections of mathematical content are included, but the mathematically interested reader is here pointed to selected references and other chapters in this volume.

Keywords

Radiative Transfer Radiative Transfer Model Monte Carlo Model Asymmetry Factor Single Scattering Albedo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ISO 2469, Paper, board and pulps – Measurement of diffuse reflectance factor, International Organization for Standardization, Geneva, Switzerland (1994).Google Scholar
  2. 2.
    ISO 2470, Paper, board and pulps – Measurement of diffuse blue reflectance factor (ISO brightness), International Organization for Standardization, Geneva, Switzerland (1999).Google Scholar
  3. 3.
    ISO 2471, Paper and board – Determination of opacity (paper backing) – Diffuse reflectance method, International Organization for Standardization, Geneva, Switzerland (1998).Google Scholar
  4. 4.
    ISO 9416, Paper – Determination of light scattering and absorption coefficients (using Kubelka–Munk theory), International Organization for Standardization, Geneva, Switzerland (1998).Google Scholar
  5. 5.
    Kubelka, P. and F. Munk, 1931: Ein Beitrag zur Optik der Farbanstriche, Z. Tech. Phys., 11a, 593–601.Google Scholar
  6. 6.
    Kubelka, P., 1948: New contributions to the optics of intensely light-scattering materials. Part I, J. Opt. Soc. Amer., 38, 448–457.Google Scholar
  7. 7.
    Kubelka, P., 1954: New contributions to the optics of intensely light-scattering materials. Part II, J. Opt. Soc. Amer., 44, 330–335.Google Scholar
  8. 8.
    van den Akker, J. A., 1949: Scattering and absorption of light in paper and other diffusing media, TAPPI, 32, 498–501.Google Scholar
  9. 9.
    Foote, W. J., 1939: An investigation of the fundamental scattering and absorption coefficients of dyed handsheets, Paper Trade Journal, 109, 397–404.Google Scholar
  10. 10.
    Nordman, L., P. Aaltonen and T. Makkonen, 1966: Relationship between mechanical and optical properties of paper affected by web consolidation, Trans. Symp. ‘Consolidation of the Paper Web’, vol. 2, 909–927.Google Scholar
  11. 11.
    Moldenius, S., 1983: Light absorption coefficient spectra of hydrogen peroxide bleached mechanical pulp, Paperi Puu, 65, 747–756.Google Scholar
  12. 12.
    Rundl¨of, M. and J. A. Bristow, 1997: A note concerning the interaction between light scattering and light absorption in the application of the Kubelka–Munk equations, J. Pulp Paper Sci., 23, 220–223.Google Scholar
  13. 13.
    Neuman, M., 2005: Anisotropic Reflectance from Paper – Measurements, Simulations and Analysis, Master’s thesis, Ume˚a University, Sweden.Google Scholar
  14. 14.
    van den Akker, J. A., 1968: Theory of some of the discrepancies observed in application of the Kubelka–Munk equations to particulate systems, Modern Aspects of Reflectance Spectroscopy, W. W. Wendlandt, Ed., Plenum Press, New York, 27–46.Google Scholar
  15. 15.
    Koukoulas, A. A. and B. D. Jordan, 1997: Effect of strong absorption on the Kubelka–Munk scattering coefficient, J. Pulp Paper Sci., 23, 224–232.Google Scholar
  16. 16.
    van den Akker, J. A., 1966: Discussion on ‘Relationships between mechanical and optical properties of paper affected by web consolidation’, Trans. Symp. ‘Consolidation of the Paper Web’, vol. 2 948–950.Google Scholar
  17. 17.
    Granberg, H. and P. Edstr¨om, 2003: Quantification of the intrinsic error of the Kubelka–Munk model caused by strong light absorption, J. Pulp Paper Sci., 29, 386–390.Google Scholar
  18. 18.
    Nobbs, J. H., 1985: Kubelka–Munk theory and the prediction of reflectance, Rev. Prog. Coloration, 15, 66–75.Google Scholar
  19. 19.
    Granberg, H. and M.-C. B´eland, 2004: Modelling the angle-dependent light scattering from sheets of pulp fibre fragments, Nordic Pulp Paper Res. J., 19, 354–359.Google Scholar
  20. 20.
    Edstr¨om, P., 2005: A fast and stable solution method for the radiative transfer problem, SIAM Rev., 47, 447–468.CrossRefGoogle Scholar
  21. 21.
    Kokhanovsky, A. A., 2006: Asymptotic radiative transfer, Light Scattering Reviews, vol. 1, A. A. Kokhanovsky, Ed., Springer, Berlin, 253–289.Google Scholar
  22. 22.
    Kokhanovsky, A. A. and L. G. Sokoletsky, 2006: Reflection of light from semi-infinite absorbing turbid media. Part 1: Spherical albedo, Color Res. Appl., 31, 491–497.Google Scholar
  23. 23.
    Kokhanovsky, A. A. and L. G. Sokoletsky, 2006: Reflection of light from semi-infinite absorbing turbid media. Part 2: Plane albedo and reflection function, Color Res. Appl., 31, 498–509.Google Scholar
  24. 24.
    Philips-Invernizzi, B., D. Dupont and C. Caz`E, 2001: Bibliographical review for reflectance of diffusing media, Opt. Eng., 40, 1082–1092.Google Scholar
  25. 25.
    Murphy, A. B., 2007: Optical properties of an optically rough coating from inversion of diffuse reflectance measurements, Appl. Opt., 46, 3133–3143.CrossRefGoogle Scholar
  26. 26.
    Kokhanovsky, A. A., 2007: Physical interpretation and accuracy of the Kubelka–Munk theory, J. Phys. D: Appl. Phys., 40, 2210–2216.CrossRefGoogle Scholar
  27. 27.
    Kokhanovsky, A. A. and I. Hopkinson, 2008: Some analytical approximations to radiative transfer theory and their application for the analysis of reflectance data, J. Opt. A: Pure Appl. Opt., 10, 035001.CrossRefGoogle Scholar
  28. 28.
    Mudgett, P. S. and L. W. Richards, 1971: Multiple scattering calculations for technology, Appl. Opt., 10, 1485–1502.CrossRefGoogle Scholar
  29. 29.
    Mudgett, P. S. and L. W. Richards, 1972: Multiple scattering calculations for technology II, J. Colloid Interf. Sci., 39, 551–567.CrossRefGoogle Scholar
  30. 30.
    van de Hulst, H. C., 1980: Multiple Light Scattering. Tables, Formulas and Applications. vol. 2, Academic Press, New York.Google Scholar
  31. 31.
    Yang, L. and B. Kruse, 2004: Revised Kubelka–Munk theory. I. Theory and applications, J. Opt. Soc. Am. A, 21, 1933–1941.Google Scholar
  32. 32.
    Yang, L., B. Kruse and S. J. Miklavcic, 2004: Revised Kubelka–Munk theory. II. Unified framework for homogenous and inhomogenous optical media, J. Opt. Soc. Am. A, 21, 1942–1952.Google Scholar
  33. 33.
    Yang, L. and S. J. Miklavcic, 2005: A theory of light propagation incorporating scattering and absorption in turbid media, Opt. Lett., 30, 792–794.CrossRefGoogle Scholar
  34. 34.
    Yang, L. and S. J. Miklavcic, 2005: Revised Kubelka–Munk theory. III. A general theory of light propagation in scattering and absorptive media, J. Opt. Soc. Am. A, 22, 1866–1873.Google Scholar
  35. 35.
    Edstr¨om, P., 2007: Examination of the revised Kubelka–Munk theory: considerations of modeling strategies, J. Opt. Soc. Am. A, 24, 548–556.Google Scholar
  36. 36.
    Kokhanovsky, A. A., 2002: Statistical properties of a photon gas in random media, Phys. Rev. E, 66, 037601.CrossRefGoogle Scholar
  37. 37.
    Edstr¨om, P., 2009: Numerical performance of stability enhancing and speed increasing steps in radiative transfer solution methods, J. Comput. Appl. Math., 228, 104–114.Google Scholar
  38. 38.
    Edstr¨om, P., 2008: A two-phase parameter estimation method for radiative transfer problems in paper industry applications, Inverse Probl. Sci. Eng., 16, 927–951.Google Scholar
  39. 39.
    Feng, T., P. Edstr¨om and M. Gulliksson, 2007: Levenberg–Marquardt methods for parameter estimation problems in the radiative transfer equation, Inverse Problems, 23, 879–891.Google Scholar
  40. 40.
    Edstr¨om, P., 2004: Comparison of the DORT2002 radiative transfer solution method and the Kubelka–Munk model, Nordic Pulp Paper Res. J., 19, 397–403.Google Scholar
  41. 41.
    Lord Rayleigh, 1871: On the light from the sky, its polarization and colour, Philos. Mag., 41, 107–120, 274–279. (Reprinted in Scientific Papers by Lord Rayleigh, vol. I: 1869–1881, No. 8, Dover, New York, 1964.)Google Scholar
  42. 42.
    Mie, G., 1908: Beitr¨age zur Optik tr¨uber Medien, Speziell Kolloidaler Metall¨osungen, Ann. Phys., 25, 377–445.CrossRefGoogle Scholar
  43. 43.
    Henyey, L. G. and J. L. Greenstein, 1941: Diffuse radiation in the galaxy, Astrophys. J., 93, 70–83.CrossRefGoogle Scholar
  44. 44.
    Chandrasekhar, S., 1960: Radiative Transfer, Dover, New York.Google Scholar
  45. 45.
    van Gemert, M. J. C. and W. M. Star, 1987: Relations between the Kubelka–Munk and the transport equation models for anisotropic scattering, Lasers Life Sci., 1, 287–298.Google Scholar
  46. 46.
    Prahl, S. A., M. J. C. van Gemert and A. J. Welch, 1993: Determining the optical properties of turbid media using the adding-doubling method, Appl. Opt., 32, 559–568.CrossRefGoogle Scholar
  47. 47.
    Joshi, N., C. Donner and H. W. Jensen, 2006: Noninvasive measurement of scattering anisotropy in turbid materials by nonnormal incident illumination, Opt. Lett., 31, 936–938.CrossRefGoogle Scholar
  48. 48.
    Case, K. M. and P. F. Zweifel, 1967: Linear Transport Theory, Addison-Wesley, Reading, MA.Google Scholar
  49. 49.
    Choulli, M. and P. Stefanov, 1998: An inverse boundary value problem for the stationary transport eEquation, Osaka J. Math, 36, 87–104.Google Scholar
  50. 50.
    Liu, H., T. Ye and C. Mao, 2007: Fluorescent carbon nanoparticles derived from candle soot, Angew. Chem. Int. Ed., 46, 6473–6475.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Natural Sciences, Engineering and MathematicsMid Sweden UniversityHärnösandSweden

Personalised recommendations