Skip to main content

Numerical simulations of light scattering and absorption characteristics of aggregates

  • Chapter
  • First Online:
Light Scattering Reviews 5

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

A non-sphericity of a particle plays an important role in light scattering processes, resulting in different scattering and absorption of incident light compared with spherical particles. Among various non-spherical shapes of particles, aggregates of small particles are often applied as model shapes to particles observed actually in nature, such as dust from cometary nuclei, soot aerosols floating in the Earth’s atmosphere, and microbiocells composed of sets of small organic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, A.C., H. Mutschke, T. Posch, M. Min, and A. Tamanai, 2006: Infrared extinction by homogeneous particle aggregates of SiC, FeO and SiO2: Comparison of different theoretical approaches, J. Quant. Spectrosc. Rad. Transfer, 100, 4–15.

    Article  CAS  Google Scholar 

  2. Bertini, I., N. Thomas, and C. Barbieri, 2007: Modeling of the light scattering properties of cometary dust using fractal aggregates, Astron. Astrophys., 461, 351–364.

    Article  CAS  Google Scholar 

  3. Borghese, F., P. Denti, G. Toscano, and O.I. Sindoni, 1979: Electromagnetic scattering by a cluster of spheres, Appl. Opt., 18, 116–120.

    Article  CAS  Google Scholar 

  4. Borghese, F., P. Denti, R. Saija, G. Toscano, and O.I. Sindoni, 1984a: Multiple electromagnetic scattering from a cluster of spheres. I. Theory, Aerosol Sci. Technol., 4

    Google Scholar 

  5. 227–235.

    Google Scholar 

  6. Borghese, F., P. Denti, R. Saija, G. Toscano, and O.I. Sindoni, 1984b: Use of group theory for the description of electromagnetic scattering from molecular systems, J. Opt. Soc. Am. A, 1, 183–191.

    Article  Google Scholar 

  7. Borghese, F., P. Denti, and R. Saija, 1992: Optical properties of spheres containing a spherical eccentric inclusion, J. Opt. Soc. Am. A, 9, 1327–1335.

    Article  CAS  Google Scholar 

  8. Borghese, F., P. Denti, and R. Saija, 1994: Optical properties of spheres containing several spherical inclusions, Appl. Opt., 33, 484–493.

    Article  Google Scholar 

  9. Bohren, C.F., and D.R. Huffman, 1983: Absorption and Scattering of Light by Small Particles, New York: Wiley.

    Google Scholar 

  10. Bruning, J.H., and Y.T. Lo, 1969: Multiple scattering by spheres, Antenna Laboratory Rep. 69-5 (Antenna Laboratory, Department of Electrical Engineering, Engineering Experiment Station, University of Illinois, Urbana, Illinois).

    Google Scholar 

  11. Bruning, J.H., and Y.T. Lo, 1971a: Multiple scattering of EM waves by spheres, Part I – Multiple expansion and ray-optical solutions, IEEE Trans. Antennas Propag., AP-19, 378–390.

    Google Scholar 

  12. Bruning, J.H., and Y.T. Lo, 1971b: Multiple scattering of EM waves by spheres, Part II – Numerical and experimental results, IEEE Trans. Antennas Propag, AP-19, 391–400.

    Google Scholar 

  13. Chylek, P., and V. Srivastava, 1983: Dielectric constant of a composite inhomogeneous medium. Phys. Rev. B., 27, 5098–5106.

    Article  Google Scholar 

  14. Ch´ylek, P., G. Videen, D.J.W. Geldart, J.S. Dobbie, and H.C.W. Tso, 2000: Effective approximations for heterogeneous particles, in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M.I. Mishchenko, J.W. Hovenier, J.D. Travis (eds.), San Diego: Academic, 273–308.

    Google Scholar 

  15. Collinge, M.J., and B.T. Draine, 2004: Discrete dipole approximation using the surface-corrected lattice dispersion relation, J. Opt. Soc. Am., A, 21, 2023–2028.

    Google Scholar 

  16. Dorschner, J., B. Begemann, T. Henning, C. J¨ager, and H. Mutschke, 1995: Steps toward interstellar silicate mineralogy. II Study of Mg glasses of variable composition. Astron. Astrophys., 300, 503–520.

    Google Scholar 

  17. Draine, B.T., 1988: The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J., 333, 848–872.

    Article  CAS  Google Scholar 

  18. Draine, B.T., and P.J. Flatau, 1994: Discrete dipole approximation for scattering calculations, J. Opt. Soc. Am., A11, 1491–1499.

    Article  Google Scholar 

  19. Draine, B.T., 2000: The discrete-dipole approximation for light scattering by irregular targets, in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M.I. Mishchenko, J.W. Hovenier, and J.D. Travis (eds.), San Diego: Academic, 131–145.

    Google Scholar 

  20. Draine, B.T., and P.J. Flatau, 2004: User Guide to the Discrete Dipole Approximation Code DDSCAT 6.1, http://arxiv.org/abs/astro-ph/0409262.

  21. Fuller, K.A., G.W. Kattawar, R.T. Wang, 1986: Electromagnetic scattering from two dielectric spheres: further comparisons between theory and experiment, Appl. Opt., 25, 2521–2529.

    Article  CAS  Google Scholar 

  22. Fuller, F.A., and G.W. Kattawar, 1988a: Consummate solution to the problem of classical electromagnetic scattering by ensembles of spheres. I. Linear chains, Opt. Lett., 13, 90–92.

    Google Scholar 

  23. Fuller, K.A., and G.W. Kattawar, 1988b: Consummate solution to the problem of classical electromagnetic scattering by ensembles of spheres. II. Clusters of arbitrarily configurations, Opt. Lett., 13, 1063–1065.

    Google Scholar 

  24. Fuller, K.A., 1994: Scattering and absorption cross sections of compounded spheres. I. Theory for external aggregation, J. Opt. Soc. Am. A, 11, 3251–3260.

    Google Scholar 

  25. Fuller, K.A., 1995: Scattering and absorption cross sections of compounded spheres. III. Spheres containing arbitrarily located spherical inhomogeneities, Appl. Opt., 12, 893–904.

    Google Scholar 

  26. G´erardy, J.M., and M. Ausloos, 1980: Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. The long-wavelength limit, Phys. Rev. B, 22, 4950–4959.

    Google Scholar 

  27. G´erardy, J.M., and M. Ausloos, 1982: Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres, Phys. Rev. B, 25, 4204–4229.

    Google Scholar 

  28. Gustafson, B.˚A.S., 1996: Microwave analog to light scattering measurements: a modern implementation of a proven method to achieve precise control, J. Quant. Spectrosc. Rad. Transfer, 55, 663–672.

    Google Scholar 

  29. Gustafson, B.˚A.S., 1999: Microwave analog to light scattering measurements, in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis (eds.), Academic Press, 367–390.

    Google Scholar 

  30. Gutkowicz-Krusin, D., and B.T. Draine, 2004: Propagation of Electromagnetic Waves on a Rectangular Lattice of Polarizable Points, http://arxiv.org/abs/astroph/0403082

  31. Hanner, M.S., and J.P. Bradley, 2004: Composition and mineralogy of cometary dust, in: Festou, M., Keller, U., and Weaver, H. (eds.), Comets II, University of Arizona Press, Tucson, AZ, 555–564.

    Google Scholar 

  32. Hapke, B., 1993: Theory of Reflectance and Emittance Spectroscopy, New York: Cambridge University Press.

    Google Scholar 

  33. Jones, R.V., L. Spitzer Jr, 1967: Magnetic alignment of interstellar grains, Astrophys. J., 147, 943–964.

    Article  Google Scholar 

  34. Jones, A.R., 1979: Electromagnetic wave scattering by assemblies of particles in the Rayleigh approximation. Proc. R. Soc. Lond. A., 366, 111–127.

    Article  CAS  Google Scholar 

  35. Kimura, H., 2001: Light-scattering properties of fractal aggregates: numerical calculations by a superposition technique and the discrete-dipole approximation, J. Quant. Spectrosc. Rad. Transfer, 70, 581–594.

    Article  CAS  Google Scholar 

  36. K¨ohler, M., H. Kimura, and I. Mann, 2006: Applicability of the discrete-dipole approximation to light-scattering simulations of large cosmic dust aggregates, Astron. Astrophys., 448, 395–399.

    Google Scholar 

  37. Kozasa, T., J. Blum, and T. Mukai, 1992: Optical properties of dust aggregates, I. Wavelength dependence. Astron. Astrophys., 263, 423–432.

    CAS  Google Scholar 

  38. Kozasa, T., J. Blum, H. Okamoto, and T. Mukai, 1993: Optical properties of dust aggregates. II. Angular dependence of scattered light, Astron. Astrophys., 276, 278–288.

    Google Scholar 

  39. Laor, A., and B.T. Draine, 1993: Spectroscopic constraints on the properties of dust in active galactic nuclei. Astrophys. J., 402, 441–68.

    Article  Google Scholar 

  40. Lasue, J., and A.C. Levasseur-Regourd, 2006: Porous irregular aggregates of submicron sized grains to reproduce cometary dust light scattering observations, J. Quant. Spectrosc. Rad. Transfer, 100, 220–236.

    Article  CAS  Google Scholar 

  41. Liang, C., and Y.T. Lo, 1967: Scattering by two spheres, Radio Sci., 2, 1481–1495.

    Google Scholar 

  42. Mackowski, D.W., 1991: Analysis of radiative scattering for multiple sphere configurations, Proc. R. Soc. London Ser. A, 433, 599–614.

    Article  Google Scholar 

  43. Mackowski, D.W., 1994: Calculation of total cross sections of multiple-sphere clusters. J. Opt. Soc. Am. A, 11, 2851–2861.

    Article  Google Scholar 

  44. Mackowski, D.W., and M.I. Mishchenko, 1996: Calculation of the T matrix and the scattering matrix for ensembles of spheres, J. Opt. Soc. Am. A, 13, 2266–2278.

    Article  Google Scholar 

  45. Matsumoto, M., and T. Nishimura, 1998: Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator, ACM Trans. on Modeling and Computer Simulation, 8, 3–30.

    Article  Google Scholar 

  46. McQueen, J., 1967: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 281–297.

    Google Scholar 

  47. Mishchenko, M.I., 1991: Light scattering by randomly oriented axially symmetric particles, J. Opt. Soc. Amer., 8, 871–882.

    Article  CAS  Google Scholar 

  48. Mishchenko, M.I., W.J. Wiscombe, J.W. Hovenier, and J.D. Travis, 2000: Overview of scattering by nonspherical particles. In Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M.I. Mishchenko, J.W. Hovenier, and J.D. Travis (eds.), San Diego: Academic, 29–60.

    Google Scholar 

  49. Mishchenko, M.I., L.D. Travis, and A.A. Lacis, 2002: Scattering, Absorption, and Emission of Light by Small Particles, Cambridge: Cambridge University Press.

    Google Scholar 

  50. Mishchenko, M.I., 2006: Scale invariance rule in electromagnetic scattering, J. Quant. Spectrosc. Rad. Transfer, 101, 411–415.

    Article  CAS  Google Scholar 

  51. Mishchenko, M.I., L.D. Travis, and A.A. Lacis, 2006: Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering, Cambridge: Cambridge University Press.

    Google Scholar 

  52. Mishchenko, M.I., G. Videen, V.A. Babenko, N.G. Khlebtsov, and T. Wriedt, 2007: Comprehensive T-matrix reference database: A 2004–06 update, J. Quant. Spectrosc. Rad. Transfer, 106, 304–324.

    Article  CAS  Google Scholar 

  53. Mishchenko, M.I., G. Videen, N.G. Khlebtsov, T. Wriedt, and N.T. Zakharova, 2008: Comprehensive T-matrix reference database: A 2006–07 update, J. Quant. Spectrosc. Rad. Transfer, 109, 1447–1460.

    Article  CAS  Google Scholar 

  54. Muinonen, K. 1990: Light scattering by inhomogeneous media: Backward enhancement and reversal of linear polarization, Ph.D. thesis, University of Helsinki, Helsinki.

    Google Scholar 

  55. Mukai, T., 1989: Cometary dust and interplanetary particles. In: Bonetti A, Greenberg JM, and Aiello SA (eds.), Evolution of Interstellar Dust and Related Topics. Amsterdam: Elsevier, p. 397.

    Google Scholar 

  56. Mukai, T., H. Ishimoto, T. Kozasa, J. Blum, and J.M. Greenberg, 1992: Radiation pressure forces of fluffy porous grains. Astron. Astrophys., 262, 315–320.

    CAS  Google Scholar 

  57. Mukai, T., J. Blum, A.M. Nakamura, R.E. Johnson, and O. Havnes, 2001: Physical processes on interplanetary dust, in Interplanetary Dust, E. Gr¨un, B. ˚A. S. Gustafson, S. Dermott, and H. Fechtig (eds.), New York: Springer, 445–508.

    Google Scholar 

  58. Niederreiter, H., 1992: Random Number Generation and Quasi-Monte Carlo Methods. Philadelphia: SIAM.

    Google Scholar 

  59. Okada, Y., T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, 2007: Grouping and adding method for calculating light scattering by large fluffy aggregates, J. Quant. Spectrosc. Rad. Transfer, 108, 65–80.

    Article  CAS  Google Scholar 

  60. Okada, Y., 2008: Efficient numerical orientation averaging of light scattering properties with a quasi-Monte-Carlo method, J. Quant. Spectrosc. Rad. Transfer, 109, 1719–1742.

    Article  CAS  Google Scholar 

  61. Okada, Y., I. Mann, T. Mukai, and M. K¨ohler, 2008: Extended calculation of polarization and intensity of fractal aggregates based on rigorous method for light scattering simulations with numerical orientation averaging, J. Quant. Spectrosc. Rad. Transfer, 109, 2613–2627.

    Google Scholar 

  62. Okada, Y., A.A. Kokhanovsky, 2009: Light scattering and absorption by densely packed groups of spherical particles, J. Quant. Spectrosc. Rad. Transfer, 110, doi:10.1016/j.jqsrt.2008.12.007.

    Google Scholar 

  63. Petrov, D.V., E.S. Zubko, and Y.G. Shkuratov, 2004: Modeling polarization properties of structure analogs of cometary dust particles, Proceedings of the 67th AnnualMeeting of the Meteoritical Society, August 2–6, Rio de Janeiro, Brazil, abstract no. 5141.

    Google Scholar 

  64. Petrova, E.V., K. Jockers, and N.N. Kiselev, 2000: Light scattering by aggregates with sizes comparable to the wavelength: An application to cometary dust, Icarus, 148, 526–536.

    Article  Google Scholar 

  65. Petrova, E.V., V.P. Tishkovets, and K. Jockers, 2004: Polarization of light scattered by solar system bodies and the aggregate model of dust particles, Solar System Res., 38, 309–324.

    Article  Google Scholar 

  66. Petrova, E.V., V.P. Tishkovets, and K. Jockers, 2007: Modeling of opposition effects with ensembles of clusters: Interplay of various scattering mechanisms, Icarus, 188, 233–245.

    Article  Google Scholar 

  67. Preibisch, T., V. Ossenkopf, H.W. Yorke, and T. Henning, 1993: The influence of ice-coated grains on protostellar spectra, Astron. Astrophys., 279, 577–88.

    CAS  Google Scholar 

  68. Seeliger, H. 1887: Zur Theorie Baleuchtung der Grossen Planeten Inbesondere des Saturn. Abhandl. Bayer. Akad. Wiss. Math. Naturw. Kl. II, 16, 405–516.

    Google Scholar 

  69. Sun, W., and Q. Fu, 2000: Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices, Appl. Opt., 39 5569–5578.

    Article  CAS  Google Scholar 

  70. Taflove, A., and S.C. Hagness, 2005: Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Antennas and Propagation Library). Massachusetts: Artech House.

    Google Scholar 

  71. Tamanai, A., H. Mutschke, J. Blum, and R. Neuh¨auser, 2006: Experimental infrared spectroscopic measurement of light extinction for agglomerate dust grains, J. Quant. Spectrosc. Rad. Transfer, 100, 373–381.

    Google Scholar 

  72. Tishkovets, V.P., E.V. Petrova, and K. Jockers, 2004: Optical properties of aggregate particles comparable in size to the wavelength, J. Quant. Spectrosc. Rad. Transfer, 86, 241–255.

    Article  CAS  Google Scholar 

  73. Volten, H., O. Mu˜noz, J.W. Hovenier, F.J.M. Rietmeijer, J.A. Nuth, L.B.F.M.Waters, and W.J. van der Zande, 2007: Experimental light scattering by fluffy aggregates of magnesiosilica, ferrosilica, and alumina cosmic dust analogs, Astron. Astrophys., 470, 377–386.

    Google Scholar 

  74. Voshchinnikov, N.V., V.B. Il’in, and T. Henning, 2005: Modeling the optical properties of composite and porous interstellar grains, Astron. Astrophys., 429, 371–381.

    Article  CAS  Google Scholar 

  75. Wang, Y.M., and W.C. Chew, 1993: A recursive T-matrix approach for the solution of electromagnetic scattering by many spheres, IEEE Trans. Antennas Propag., 41, 1633–1639.

    Article  Google Scholar 

  76. Waterman, P.C., 1965: Matrix formulation of electromagnetic scattering, Prof. IEEE, 53, 805–812.

    Article  Google Scholar 

  77. Waterman, P.C., 1971: Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev., D 3, 825–839.

    Google Scholar 

  78. Wolff, M.J., G.C. Clayton, P.G. Martin, and R.E. Schulte-Ladbeck, 1994: Modeling composite and fluffy grains: The effects of porosity. Astrophys. J., 423, 412–425.

    Article  Google Scholar 

  79. Wolff, M.J., G.C. Clayton, and S.J. Gibson, 1998: Modeling composite and fluffy grains. II. Porosity and phase functions. Astrophys. J., 503, 815–830.

    Google Scholar 

  80. Xu, Y.L., 1995: Electromagnetic scattering by an aggregate of spheres. Appl. Opt., 34, 4573–4588.

    Article  Google Scholar 

  81. Xu, Y.L., 1997: Electromagnetic scattering by an aggregate of spheres: far field. Appl. Opt., 36, 9496–9508.

    Article  CAS  Google Scholar 

  82. Xu, Y.L., and N.G. Khlebtsov, 2003: Orientation-averaged radiative properties of an arbitrary configuration of scatterers, J. Quant. Spectrosc. Rad. Transfer, 79-80, 1121–1137.

    Article  Google Scholar 

  83. Xu, Y.L., 2004: Radiative-scattering signatures of an ensemble of nonspherical particles, J. Quant. Spectrosc. Rad. Transfer, 89, 385–419.

    Article  CAS  Google Scholar 

  84. Yang, P., and K.N. Liou, 2000: Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles, in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M.I. Mishchenko, J.W. Hovenier, and J.D. Travis (eds.), San Diego: Academic, 173–221.

    Google Scholar 

  85. Yurkin, M.A., V.P. Maltsev, and A.G. Hoekstra, 2007: The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength, J. Quant. Spectrosc. Rad. Transfer, 106, 546–557.

    Article  CAS  Google Scholar 

  86. Zubko, E., Y. Shkuratov, H. Matthew, J. Eversole, and G. Videen, 2004: Backscatter of agglomerate particles, J. Quant. Spectrosc. Rad. Transfer, 88, 163–171.

    Article  CAS  Google Scholar 

  87. Mischenko, M.I., G. Videen, V.A. Babenko, N.G. Khlebtsov, and T. Wriedt, 2004: T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database, J. Quant. Spectrosc. Rad. Transfer, 88, 357–406.

    Google Scholar 

  88. ftp://ftp.eng.auburn.edu/pub/dmckwski/scatcodes

  89. http://yasokada.googlepages.com/gam

  90. http://yasokada.googlepages.com/qmc

  91. http://www.iup.uni-bremen.de/˜alexk, then choose the link ‘T-matrix’ at the right side menu

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Okada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okada, Y. (2010). Numerical simulations of light scattering and absorption characteristics of aggregates. In: Kokhanovsky, A. (eds) Light Scattering Reviews 5. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10336-0_1

Download citation

Publish with us

Policies and ethics