Robust Harris-Laplace Detector by Scale Multiplication

  • Fanhuai Shi
  • Xixia Huang
  • Ye Duan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5875)


This paper proposes a robust Harris-Laplace detector by scale multiplication. The specific Harris corner measure functions at adjacent scales are multiplied as a product function to magnify the corner like structures, while suppress the image noise and weak features simultaneously. Unlike the contour-based multi-scale curvature product for image corner detection, we detect the corner like features directly in intensity image. Experiments on natural images demonstrate that the proposed method has good consistency of corner detection under different noise levels.


Image Noise Scale Multiplication Corner Detection Weak Feature Harris Corner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tuytelaars, T., Mikolajczyk, K.: Local Invariant Feature Detectors: A Survey. Foundations and Trends in Computer Graphics and Vision 3(3), 177–280 (2008)CrossRefGoogle Scholar
  2. 2.
    Teh, C., Chin, R.: On the detection of dominant points on digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 11, 859–872 (1989)CrossRefGoogle Scholar
  3. 3.
    Ji, Q., Haralick, R.: Corner detection with covariance propagation. In: Proc. of CVPR, pp. 362–367 (1997)Google Scholar
  4. 4.
    Mokhtarian, F., Suomela, R.: Robust image corner detection through curvature scale-space. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1376–1381 (1998)CrossRefGoogle Scholar
  5. 5.
    He, X., Yung, N.: Curvature scale space corner detector with adaptive threshold and dynamic region of support. In: Proc. of ICPR, pp. 791–794 (2004)Google Scholar
  6. 6.
    Zhang, X., Lei, M., Yang, D., Wang, Y., Ma, L.: Multi-scale curvature product for robust image corner detection in curvature scale space. Pattern Recognition Letters 28, 545–554 (2007)zbMATHCrossRefGoogle Scholar
  7. 7.
    Awrangjeb, M., Lu, G.: Robust Image Corner Detection based on the Chord-to-Point Distance Accumulation Technique. IEEE Trans. on Multimedia 10(6), 1059–1072 (2008)CrossRefGoogle Scholar
  8. 8.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  9. 9.
    Jacob, M., Unser, M.: Design of steerable filters for feature detection using Canny-like criteria. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1007–1019 (2004)CrossRefGoogle Scholar
  10. 10.
    Lindeberg, T.: Feature detection with automatic scale selection. Inter. J. Comput. Vision 30(2), 79–116 (1998)CrossRefGoogle Scholar
  11. 11.
    Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Inter. J. Comput. Vision 1(60), 63–86 (2004)CrossRefGoogle Scholar
  12. 12.
    Noble, J.: Finding corners. Image and Vision Computing 6(2), 121–128 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Fanhuai Shi
    • 1
    • 2
  • Xixia Huang
    • 3
  • Ye Duan
    • 1
  1. 1.Computer Science DepartmentUniversity of Missouri-ColumbiaUSA
  2. 2.Welding Engineering InstituteShanghai Jiao Tong UniversityChina
  3. 3.Marine Technology & Control Engineering Key LabShanghai Maritime UniversityChina

Personalised recommendations