Skip to main content

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 5))

  • 665 Accesses

Abstract

This part reviews the steps involved in the traditional skeleton-based character animation paradigm, and proposes two mesh-based alternatives that simplify the conventional process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Aguiar, E., Theobalt, C., Magnor, M., Theisel, H., Seidel, H.P.: M3: Marker-free model reconstruction and motion tracking from 3d voxel data. In: Proc. of PG, pp. 101–110 (2004)

    Google Scholar 

  2. de Aguiar, E., Theobalt, C., Seidel, H.P.: Automatic learning of articulated skeletons from 3d marker trajectories. In: Proc. ISVC, pp. 485–494 (2006)

    Google Scholar 

  3. de Aguiar, E., Theobalt, C., Stoll, C., Seidel, H.P.: Rapid animation of laser-scanned humans. In: IEEE Virtual Reality 2007, pp. 223–226 (2007)

    Google Scholar 

  4. de Aguiar, E., Zayer, R., Theobalt, C., Magnor, M., Seidel, H.P.: A simple framework for natural animation of digitized models. In: IEEE SIBGRAPI (2007)

    Google Scholar 

  5. de Aguiar, E., Zayer, R., Theobalt, C., Magnor, M., Seidel, H.P.: Video-driven animation of human body scans. In: IEEE 3DTV Conference (2007)

    Google Scholar 

  6. Allen, B., Curless, B., Popović, Z.: Articulated body deformation from range scan data. ACM Trans. Graph. 21(3), 612–619 (2002)

    Article  Google Scholar 

  7. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: Reconstruction and parameterization from range scans. ACM Trans. Graph. 22(3), 587–594 (2003)

    Article  Google Scholar 

  8. Anguelov, D., Koller, D., Pang, H., Srinivasan, P., Thrun, S.: Recovering articulated object models from 3d range data. In: Proc. of UAI, pp. 18–26 (2004)

    Google Scholar 

  9. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: Shape completion and animation of people. ACM Trans. Graph. 24(3), 408–416 (2005)

    Article  Google Scholar 

  10. Aujay, G., Hétroy, F., Lazarus, F., Depraz, C.: Harmonic skeleton for realistic character animation. In: SCA 2007, pp. 151–160 (2007)

    Google Scholar 

  11. Badler, N., Metaxas, D., Magnenat-Thalmann, N.: Virtual Humans. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  12. Baran, I., Popović, J.: Automatic rigging and animation of 3d characters. ACM Trans. Graph. 26(3), 72 (2007)

    Google Scholar 

  13. Bodenheimer, B., Rose, C., Rosenthal, S., Pella, J.: The process of motion capture: Dealing with the data. In: Computer Animation and Simulation 1997, pp. 3–18 (1997)

    Google Scholar 

  14. Davis, J., Agrawala, M., Chuang, E., Popović, Z., Salesin, D.: A sketching interface for articulated figure animation. In: Proc. of SCA 2003, pp. 320–328 (2003)

    Google Scholar 

  15. Der, K.G., Sumner, R.W., Popović, J.: Inverse kinematics for reduced deformable models. In: Proc. ACM SIGGRAPH, pp. 1174–1179 (2006)

    Google Scholar 

  16. Faloutsos, P., van de Panne, M., Terzopoulos, D.: The virtual stuntman: Dynamic characters with a repertoire of autonomous motor skills. Computers and Graphics 25(6), 933–953 (2001)

    Article  Google Scholar 

  17. Fang, A.C., Pollard, N.S.: Efficient synthesis of physically valid human motion. ACM Trans. Graph. 22(3), 417–426 (2003)

    Article  Google Scholar 

  18. Gleicher, M.: Motion editing with space-time constraints. In: Proc. of Symposium on Interactive 3D Graphics, pp (1997)

    Google Scholar 

  19. Gleicher, M.: Retargetting motion to new characters. In: Proc. of ACM SIGGRAPH, pp. 33–42 (1998)

    Google Scholar 

  20. Herda, L., Fua, P., Plänkers, R., Boulic, R., Thalmann, D.: Skeleton-based motion capture for robust reconstruction of human motion. In: CA 2000: Proc. of the Computer Animation (2000)

    Google Scholar 

  21. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.Y., Teng, S.H., Bao, H., Guo, B., Shum, H.Y.: Subspace gradient domain mesh deformation. ACM Trans. Graph. 25(3), 1126–1134 (2006)

    Article  Google Scholar 

  22. Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. In: SIGGRAPH 2005, pp. 1134–1141 (2005)

    Google Scholar 

  23. Kirk, A.G., O’Brien, J.F., Forsyth, D.A.: Skeletal parameter estimation from optical motion capture data. In: CVPR, pp. 782–788 (2005)

    Google Scholar 

  24. Lee, J., Shin, S.Y.: A hierarchical approach to interactive motion editing for human-like figures. In: Proc. of ACM SIGGRAPH, pp. 39–48 (1999)

    Google Scholar 

  25. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: Proc. of ACM SIGGRAPH 2000, pp. 165–172 (2000)

    Google Scholar 

  26. Park, S.I., Hodgins, J.K.: Capturing and animating skin deformation in human motion. ACM Transactions on Graphics (SIGGRAPH 2006) 25(3), 881–889 (2006)

    Article  Google Scholar 

  27. Poppe, R.: Vision-based human motion analysis: An overview. CVIU 108, 4–18 (2007)

    Google Scholar 

  28. Sand, P., McMillan, L., Popović, J.: Continuous capture of skin deformation. ACM Trans. Graph. 22(3), 578–586 (2003)

    Article  Google Scholar 

  29. Schaefer, S., Yuksel, C.: Example-based skeleton extraction. In: SGP 2007, pp. 153–162 (2007)

    Google Scholar 

  30. Shi, L., Yu, Y., Bell, N., Feng, W.W.: A fast multigrid algorithm for mesh deformation. ACM Trans. Graph. 25(3), 1108–1117 (2006)

    Article  Google Scholar 

  31. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. In: Proc. ACM SIGGRAPH, pp. 399–405 (2004)

    Google Scholar 

  32. Sumner, R.W., Zwicker, M., Gotsman, C., Popović, J.: Mesh-based inverse kinematics. In: Proc. ACM SIGGRAPH, pp. 488–495 (2005)

    Google Scholar 

  33. Tak, S., Ko, H.S.: A physically-based motion retargeting filter. ACM Trans. Graph. 24(1), 98–117 (2005)

    Article  Google Scholar 

  34. Xu, W., Zhou, K., Yu, Y., Tan, Q., Peng, Q., Guo, B.: Gradient domain editing of deforming mesh sequences. ACM TOG 26(3), 84 (2007)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Aguiar, E. (2010). Problem Statement and Preliminaries. In: Animation and Performance Capture Using Digitized Models. Cognitive Systems Monographs, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10316-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10316-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10315-5

  • Online ISBN: 978-3-642-10316-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics