Skip to main content

Calibration of a Global Hydrological Model with GRACE Data

  • Chapter
  • First Online:
System Earth via Geodetic-Geophysical Space Techniques

Part of the book series: Advanced Technologies in Earth Sciences ((ATES))

Abstract

Water mass variations from the GRACE satellite mission are an unprecedented data set for validation and calibration of large-scale hydrological models. We develop an efficient multi-objective calibration framework to incorporate time series of monthly measured river discharge and GRACE water storage variations into the parameter tuning process of the WaterGAP Global Hydrology Model (WGHM ). The calibration approach is applicable to large river basins worldwide. For the example of the Amazon river basin, simulation results improved for both objectives after calibration. The improvement is shown to be due to decreased flow velocities and, thus, larger and longer-lasting water storage in the surface water network of the Amazon. The results highlight the beneficial nature of GRACE for advancing hydrological models and for understanding water storage variations in the continental water cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen O, Seneviratne SI, Hinderer J, Viterbo P (2005) GRACE derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophys. Res. Lett. 32, doi: 10.1029/2005GL023574.

    Google Scholar 

  • Döll P, Kaspar F, Lehner B (2003) A global hydrologicalmodel for deriving water availability indicators: model tuning and validation. J. Hydr. 270(1–2), 105–134.

    Article  Google Scholar 

  • Frappart F, Ramillien G, Biancamaria S, Mognard N, Cazenave A (2006) Evolution of high-latitude snow mass derived from the GRACE gravimetry mission (2002–2004). Geophys. Res. Lett. 33(2), doi: 10.1029/2005GL024778.

    Google Scholar 

  • Frappart F, Seyler F, Martinez J-M, León JG, Cazenave A (2006) Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels. Rem. Sens. Environ. 99(4), 387–399.

    Article  Google Scholar 

  • Güntner A (2008) Improvement of global hydrological models using GRACE data Surv. Geophys., doi: 10.1007/s10712-008-9038-y.

    Google Scholar 

  • Güntner A, Stuck J, Werth S, Döll P, Verzano K, Merz B (2007) A global analysis of temporal and spatial variations in continental water storage. Water Resour. Res. 43(5), W05416.

    Article  Google Scholar 

  • Hunger M, Döll P (2008) Value of river discharge data for global-scale hydrological modeling. Hydrol. Earth Syst. Sci. 12(3), 841.

    Article  Google Scholar 

  • Jekeli C (1981) Alternative methods to smooth the earth’s gravity field. Technical Report 329, Department of Geodetic Sciences and Surveying, Ohio State University, Columbus.

    Google Scholar 

  • Kollat J, Reed P (2006) Comparing state-of-the-art evolutionary multi objective algorithms for long-term groundwater monitoring design. Adv. Water Res. 29(6), 792–807.

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part-1 a discussion of principles. J. Hydr. 10(3), 282–290.

    Article  Google Scholar 

  • Ramillien G, Bouhours S, Lombard A, Cazenave A, Flechtner F, Schmidt R (2008) Land water storage contribution to sea level from GRACE geoid data over 2003–2006. Glob. Planet Change 60(3–4), 381.

    Article  Google Scholar 

  • Ramillien G, Frappart F, Güntner A, Ngo-Duc T, Cazenave A, Laval K (2006) Time variations of the regional evapotranspiration rate from gravity recovery and climate experiment (GRACE) satellite gravimetry. Water Resour. Res. 42, W10403.

    Article  Google Scholar 

  • Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu SY (2005) An earth gravity field model complete to degree and order 150 from GRACE: Eigen-GRACE02 s. J. Geodyn. 39(1), 1–10.

    Article  Google Scholar 

  • Rodell M, Chen J, Kato H, Famiglietti J, Nigro J, Wilson C (2007) Estimating groundwater storage changes in the Mississippi river basin (USA) using GRACE. Hydrogeol. J. 15(1), 159.

    Article  Google Scholar 

  • Schmidt R, Flechtner F, Meyer U, Neumayer K-H, Dahle C, König R, Kusche J (2008a) Hydrological signals observed by the GRACE satellites Surv. Geophys., doi: 10.1007/s10712-008-9033-3.

    Google Scholar 

  • Schmidt R, Petrovic S, Güntner A, Barthelmes F, Wünsch J, Kusche J (2008b) Periodic components of water storage changes from GRACE and global hydrology models. J. Geophys. Res. 113, B08419.

    Article  Google Scholar 

  • Schmidt R, Schwintzer P, Flechtner F, Reigber C, Güntner A, Döll P, Ramillien G, Cazenave A, Petrovic S, Jochmann H, Wünsch J (2006) GRACE observations of changes in continental water storage. Global and Planetary Change 50, 112–126, doi: 10.1016/j.gloplacha.2004.11.018.

    Google Scholar 

  • Seo K-W, Wilson CR, Famiglietti JS, Chen JL, Rodell M (2006) Terrestrial water mass load changes from gravity recovery and climate experiment (GRACE). Water Resour. Res. 42, W05417.

    Article  Google Scholar 

  • Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from gravity recovery and climate experiment (GRACE) measurements of time-variable gravity. J. Geophys. Res. 107(B9), 2193.

    Article  Google Scholar 

  • Syed TH, Famiglietti JS, Zlotnicki V, Rodell M (2007) Contemporary estimates of pan-arctic freshwater discharge from GRACE and reanalysis. Geophys. Res. Lett. 34(19), doi: 10.1029/2007GL031254.

    Google Scholar 

  • Tang Y, Reed P, Wagener T (2006) How effective and efficient are multi objective evolutionary algorithms at hydrologic model calibration?. Hydrol. Earth Syst. Sci. 10, 289–307.

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31, L09607.

    Article  Google Scholar 

  • Werth S, Güntner A, Petrovic S, Schmidt R (2009a) Integration of GRACE mass variations into a global hydrological model. Earth Planet Sci. Lett. 277(1–2), 166–173.

    Article  Google Scholar 

  • Werth S, Güntner A, Schmidt R, Kusche J (2009b) Evaluation of GRACE filter tools from a hydrological perspective Geophys. J. Int., doi: 10.1111/j.1365-246X.2009.04355.x.

    Google Scholar 

  • Zaitchik BF, Rodell M, Reichle RH (2008) Assimilation of GRACE terrestrial water storage data into a Land Surface Model: Results for the Mississippi River basin. J. Hydr., 9, 535–548 doi: 10.1175/2007jhm951.1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Werth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Werth, S., Güntner, A. (2010). Calibration of a Global Hydrological Model with GRACE Data. In: Flechtner, F., et al. System Earth via Geodetic-Geophysical Space Techniques. Advanced Technologies in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10228-8_36

Download citation

Publish with us

Policies and ethics