Skip to main content

Global Gravity Fields from Simulated Level-1 GRACE Data

  • Chapter
  • First Online:

Part of the book series: Advanced Technologies in Earth Sciences ((ATES))

Abstract

The GRACE satellites deliver high quality GPS code and phase, inter-satellite range and range-rate, non-gravitational acceleration, and star camera observations that can be used to estimate the static and time variable gravity field of the Earth with unprecedented accuracy. Nevertheless, the baseline accuracy that was determined in a pre-launch simulation study could not yet be reached. To find out possible reasons and to give recommendations for an improved data processing, another simulation study using the software, standards and processing strategy actually applied at GFZ in the routine processing of GRACE data is performed. The results point to inaccuracies in present ocean tide models. Additionally, it was found that the accelerometer noise cannot be absorbed sufficiently by the instrument parameters estimated so far and a shortening of the arcs seems to be necessary. Finally, an observed bias in the C20-coefficient of the GRACE gravity field models could be related to a GPS antenna phase centre bias in along-track direction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Berger C, Biancale R, Ill M, Barlier F (1998) Improvement of the empirical thermospheric model DTM: DTM-94- comparative review on various temporal variations and prospects in space geodesy applications. J. Geod. 72, 161–178.

    Article  Google Scholar 

  • Bode A, Biancale R (2006) Mean annual and seasonal atmospheric tide models based on 3-hourly and 6-hourly ECMWF surface pressure data. Scientific Technical Report STR06/01, GeoForschungsZentrum Potsdam, Potsdam.

    Google Scholar 

  • Ferrari J, Bills BG (1977) A harmonic analysis of lunar topography. Icarus 31(2), 244–259.

    Article  Google Scholar 

  • Flechtner F (2007) AOD1B Product description document for product releases 01 to 04, GRACE Project Document, JPL 327–750, rev. 3.1, JPL Pasadena, Ca.

    Google Scholar 

  • Flechtner F, Schmidt R, Meyer U (2006) De-aliasing of short-term atmospheric and oceanic mass variations for GRACE. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds.), Observation of the Earth System from Space, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Flechtner F, Dahle CH, Neumayer KH, König R, Förste CH (2009) The release 04 CHAMP and GRACE EIGEN gravity field models. In: Flechtner F, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds.), Satellite Geodesy and Earth System Science, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Förste C, Flechtner F, Schmidt R, Meyer U, Stubenvoll R, Barthelmes F, König R, Neumayer KH, Rothacher M, Reigber Ch, et al. (2005) A New High Resolution Global Gravity Field Model Derived from Combination of GRACE and CHAMP Mission and Altimetry/Gravimetry Surface Gravity Data. http://www-app2.gfz-potsdam.de/pb1/op/grace/results

  • Frommknecht B (2007) Integrated Sensor Analysis of the GRACE Mission. Institute for Astronomical and Physical Geodesy, Technical University Munich, Germany.

    Google Scholar 

  • Gunter B, Ries J, Bettadpur S, Tapley B (2006) A simulation study of the errors of omission and commission for GRACE RL01 gravity fields. J. Geod. 80, 341–351.

    Article  Google Scholar 

  • Ilk KH, Flury J, Rummel R, Schwintzer P, Bosch W, Haas C, Schröter J, Stammer D, Zahel W, Miller H, et al. (2005) Mass Transport and Mass Distribution in the Earth System – Contribution of the New Generation of Satellite Gravity and Altimetry Missions to Geosciences, 2nd ed., Proposal for a German Priority Research Program, GOCE Project Office Germany, Technical University Munich, GeoForschungsZentrum Potsdam.

    Google Scholar 

  • Kim J (2000) Simulation Study of a Low-Low Satellite-to-Satellite Tracking Mission. University of Texas at Austin, Austin, TX.

    Google Scholar 

  • Klokčoník J, Wagner CA, Kostelecký J, Bezdek A, Novák P, McAdoo D (2008) Variations in the accuracy of gravity recovery due to ground track variability: GRACE, CHAMP, and GOCE. J. Geod., doi: 10.1007/s00190-008-0222-0.

    Google Scholar 

  • Knocke PC, Ries JC, Tapley BD (1988) Earth radiation pressure effects on satellites. AIAA-88-4992-CP. In: Proc. of the AIAA/AAS Astrodynamics Conference (1988), pp. 577–586.

    Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn. 56, 394–415.

    Article  Google Scholar 

  • Savcenko R, Bosch W (2008) EOT08a – Empirical Ocean Tide Model from Multi-Mission Satellite Altimetry. Deutsches Geodätisches Forschungsinstitut, München.

    Google Scholar 

  • Schmidt R (2007) Zur Bestimmung des cm-Geoids und dessen zeitlicher Variationen mit GRACE. GeoForschungsZentrum Potsdam, Potsdam

    Google Scholar 

  • Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 31, L09607.

    Article  Google Scholar 

  • Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, et al. (2005) GGM02 – An improved earth gravity field model from GRACE. J. Geod. 79, 467–478.

    Article  Google Scholar 

  • Thomas J (1999) An Analysis of the Gravity Field Estimation Based on Dual-1-Way Intersatellite Biased Ranging. Jet Propulsion Laboratory, Pasadena, CA.

    Google Scholar 

  • Thomas M, Sündermann J, Maier-Reimer E (2001) Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation. Geophys. Res. Lett. 12, 2457.

    Article  Google Scholar 

Download references

Acknowledgment

This is publication no. GEOTECH-1269 of the GEOTECHNOLOGIEN programme of BMBF, grant 03F0423A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer, U., Frommknecht, B., Flechtner, F. (2010). Global Gravity Fields from Simulated Level-1 GRACE Data. In: Flechtner, F., et al. System Earth via Geodetic-Geophysical Space Techniques. Advanced Technologies in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10228-8_12

Download citation

Publish with us

Policies and ethics