Skip to main content

Hierarchical Evaluation Model: Extended Analysis for 3D Face Recognition

  • Conference paper
  • 699 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 24))

Abstract

In this paper we present a method for 3D face recognition that is suitable for verification systems. A Simulated Annealing (SA)-based approach for range image registration is used to perform 3D face matching. The Surface Interpenetration Measure (SIM) is used during the registration process to assess precise alignments. This measure is then used as similarity score between two face images. In the verification scenario, we propose a hierarchical evaluation model to answer if two face images belong or not to the same subject. Initially the face image is segmented into four different regions, which are hierarchically compared according. The hierarchy is defined according to each region’s size, arranged from the smallest ones to the biggest ones. At each level of the hierarchy, the similarity measure is evaluated to verify if at that step we can ensure if both faces are from the same subject. With this approach, we can boost the system performance and also reduce its computational time. Experimental results were performed using all images from the FRGC v2 database, and the results show the effectiveness of this approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cook, J., McCool, C., Chandran, V., Sridharan, S.: Combined 2D/3D face recognition using log-gabor templates. In: Proc. IEEE Int’l Conf. Video and Signal Based Surveillance, vol. 83 (2006)

    Google Scholar 

  2. Husken, M., Brauckmann, M., Gehlen, S., der Malsburg, C.V.: Strategies and benefits of fusion of 2D and 3D face recognition. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, p. 174. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  3. Kakadiaris, I., Passalis, G., Toderici, G., Murtuza, N., Theoharis, T.: Three-dimensional face recognition in the presence of facial expression: An annotated deformable model approach 29(4), 640–649 (2007)

    Google Scholar 

  4. Lu, X., Jain, A.K., Colbry, D.: Matching 2.5D face scans to 3D models. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 31–43 (2006)

    Article  Google Scholar 

  5. Chang, K.I., Bowyer, K.W., Flynn, P.J.: Multiple nose region matching for 3D face recognition under varying facial expression. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1695–1700 (2006)

    Article  Google Scholar 

  6. Faltemier, T., Bowyer, K.W., Flynn, P.J.: A region ensemble for 3d face recognition. IEEE Trans. Inf. Forensics Security 3(1), 62–73 (2008)

    Article  Google Scholar 

  7. Lin, W.Y., Wong, K.C., Boston, N., Hu, Y.H.: 3d face recognition under expression variations using similarity metrics fusion. In: Proc. IEEE Int’l Conf. Multimedia and Expo., pp. 727–730 (2007)

    Google Scholar 

  8. Silva, L., Bellon, O.R.P., Boyer, K.: Robust range image registration using the surface interpenetration measure and enhanced genetic algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 27, 762–776 (2005)

    Article  Google Scholar 

  9. Silva, L., Bellon, O.R.P., Boyer, K.: Robust Range Image Registration Using Genetic Algorithms and the Surface Interpenetration Measure. Machine Perception and Artificial Intelligence, vol. 60. World Scientific Publishing, Singapore (2005)

    MATH  Google Scholar 

  10. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proc. Int’l Conf. 3-D Digital Imaging and Modeling, pp. 145–152 (2001)

    Google Scholar 

  11. Gelfand, N., Ikemoto, L., Rusinkiewicz, S., Levoy, M.: Geometrically stable sampling for the ICP algorithm. In: Proc. Int’l Conf. 3-D Digital Imaging and Modeling, pp. 260–267 (2003)

    Google Scholar 

  12. Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 947–954 (2005)

    Google Scholar 

  13. Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

    Article  Google Scholar 

  14. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  15. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vision Computing 10(3), 145–155 (1992)

    Article  Google Scholar 

  16. Bellon, O.R.P., Silva, L., Queirolo, C., Drovetto Jr., S., Segundo, M.P.: 3D face image registration for face matching guided by the surface interpenetration measure. In: Proc. IEEE Int’l Conf. Image Processing, pp. 2661–2664 (2006)

    Google Scholar 

  17. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  18. Torr, P., Zisserman, A.: MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding 78, 138–156 (2000)

    Article  Google Scholar 

  19. Lundy, M., Mees, A.: Convergence of an annealing algorithm. Mathematical Programming: Series A and B 34(1), 111–124 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rayward-Smith, V.J., Osman, I.H., Reeves, C.R., Smith, G.D.: Modern Heuristic Search Methods. John Wiley & Sons Ltd, Chichester (1996)

    MATH  Google Scholar 

  21. Queirolo, C., Segundo, M.P., Bellon, O.R.P., Silva, L.: Noise versus facial expression on 3D face recognition. In: Proc. Int’l Conf. Image Analysis and Processing, pp. 171–176 (2007)

    Google Scholar 

  22. Segundo, M.P., Queirolo, C., Bellon, O.R.P., Silva, L.: Automatic 3d facial segmentation and landmark detection. In: Proc. Int’l Conf. Image Analysis and Processing, pp. 431–436 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Queirolo, C.C., Drovetto, S.A., Silva, L., Bellon, O.R.P., Segundo, M.P. (2009). Hierarchical Evaluation Model: Extended Analysis for 3D Face Recognition. In: Ranchordas, A., Araújo, H.J., Pereira, J.M., Braz, J. (eds) Computer Vision and Computer Graphics. Theory and Applications. VISIGRAPP 2008. Communications in Computer and Information Science, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10226-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10226-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10225-7

  • Online ISBN: 978-3-642-10226-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics