Quasi-Affine Transformation in 3-D: Theory and Algorithms

  • David Coeurjolly
  • Valentin Blot
  • Marie-Andrée Jacob-Da Col
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5852)

Abstract

In many applications and in many fields, algorithms can considerably be speed up if the underlying arithmetical computations are considered carefully. In this article, we present a theoretical analysis of affine transformations in dimension 3. More precisely, we investigate the arithmetical paving induced by the transformation to design fast algorithms.

Keywords

quasi-affine transform periodic tiling arithmetic image transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blot, V., Coeurjolly, D.: Quasi-affine transform in higher dimension. In: 15th International Conference on Discrete Geometry for Computer Imagery. LNCS. Springer, Heidelberg (submitted)Google Scholar
  2. 2.
    Blot, V., Coeurjolly, D.: Quasi-affine transform in higher dimension. Technical Report RR–LIRIS-2009-010, Laboratoire LIRIS (April 2009), http://liris.cnrs.fr/publis?id=3853
  3. 3.
    Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics: Principles and Practice, 2nd edn. Addison-Wesley, Reading (1990)Google Scholar
  4. 4.
    Jacob, M.: Applications quasi-affines. PhD thesis, Université Louis Pasteur, Strasbourg, France (1993)Google Scholar
  5. 5.
    Jacob, M.: Transformation of digital images by discrete affine applications. Computers & Graphics 19(3), 373–389 (1995)CrossRefGoogle Scholar
  6. 6.
    Jacob-Da Col, M.: Applications quasi-affines et pavages du plan discret. Theoretical Computer Science 259(1-2), 245–269 (2001), http://dpt-info.u-strasbg.fr/~jacob/articles/paving.pdf MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Jacob-Da Col, M.A., Tellier, P.: Quasi-linear transformations and discrete tilings. Theoretical Computer Science 410(21-23), 2126–2134 (2009)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Nehlig, P.: Applications quasi affines: pavages par images réciproques. Theoretical Computer Science 156(1-2), 1–38 (1996)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Nehlig, P., Ghazanfarpour, D.: Affine Texture Mapping and Antialiasing Using Integer Arithmetic. Computer Graphics Forum 11(3), 227–236 (1992)CrossRefGoogle Scholar
  10. 10.
    Storjohann, A., Labahn, G.: Asymptotically fast computation of hermite normal forms of integer matrices. In: ISSAC 1996: Proceedings of the 1996 international symposium on Symbolic and algebraic computation, pp. 259–266. ACM, New York (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • David Coeurjolly
    • 1
  • Valentin Blot
    • 2
  • Marie-Andrée Jacob-Da Col
    • 3
  1. 1.Université de Lyon, CNRS, LIRIS, UMR5205France
  2. 2.Ecole Normale Supérieure de Lyon 
  3. 3.LSIIT-UMR 7005, Pole API Bd Sébastien BrantIllkirchFrance

Personalised recommendations