Skip to main content

Convenient Closure Operators on \(\mathbb Z^2\)

  • Conference paper
Combinatorial Image Analysis (IWCIA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5852))

Included in the following conference series:

Abstract

We discuss closure operators on \(\mathbb Z^2\) with respect to which some cycles in a certain natural graph with the vertex set \(\mathbb Z^2\) are Jordan curves. We deal with several Alexandroff T 0-pretopologies and topologies and also one closure operator that is not a pretopology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Čech, E.: Topological Spaces. In: Topological Papers of Eduard Čech, pp. 436–472. Academia, Prague (1968)

    Google Scholar 

  2. Čech, E.: Topological Spaces (Revised by Frolík, Z., Katětov, M.). Academia, Prague (1966)

    Google Scholar 

  3. Eckhardt, U., Latecki, L.J.: Topologies for the digital spaces ℤ2 and ℤ3. Comput. Vision Image Understanding 90, 295–312 (2003)

    Article  MATH  Google Scholar 

  4. Engelking, R.: General Topology. Państwowe Wydawnictwo Naukowe, Warszawa (1977)

    Google Scholar 

  5. Khalimsky, E.D., Kopperman, R., Meyer, P.R.: Computer graphics and connected topologies on finite ordered sets. Topology Appl. 36, 1–17 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Khalimsky, E.D., Kopperman, R., Meyer, P.R.: Boundaries in digital planes. Jour. of Appl. Math. and Stoch. Anal. 3, 27–55 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kiselman, C.O.: Digital Jordan curve theorems. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 46–56. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Kong, T.Y., Kopperman, R., Meyer, P.R.: A topological approach to digital topology. Amer. Math. Monthly 98, 902–917 (1991)

    Article  MathSciNet  Google Scholar 

  9. Kopperman, R., Meyer, P.R., Wilson, R.G.: A Jordan surface theorem for three-dimensional digital spaces. Discr. and Comput. Geom. 6, 155–161 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Marcus, D., et al.: A special topology for the integers (Problem 5712). Amer. Math. Monthly 77, 1119 (1970)

    Article  MathSciNet  Google Scholar 

  11. Rosenfeld, A.: Digital topology. Amer. Math. Monthly 86, 621–630 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  12. Rosenfeld, A.: Picture Languages. Academic Press, New York (1979)

    MATH  Google Scholar 

  13. Šlapal, J.: A digital analogue of the Jordan curve theorem. Discr. Appl. Math. 139, 231–251 (2004)

    Article  MATH  Google Scholar 

  14. Šlapal, J.: A quotient-universal digital topology. Theor. Comp. Sci. 405, 164–175 (2008)

    Article  MATH  Google Scholar 

  15. Šlapal, J.: Closure operations for digital topology. Theor. Comp. Sci. 305, 457–471 (2003)

    Article  MATH  Google Scholar 

  16. Šlapal, J.: Digital Jordan curves. Top. Appl. 153, 3255–3264 (2006)

    Article  MATH  Google Scholar 

  17. Šlapal, J.: Relational closure operators. In: Contributions to General Algebra 16, pp. 251–259. Verlag Johannes Heyn, Klagenfurt (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Šlapal, J. (2009). Convenient Closure Operators on \(\mathbb Z^2\) . In: Wiederhold, P., Barneva, R.P. (eds) Combinatorial Image Analysis. IWCIA 2009. Lecture Notes in Computer Science, vol 5852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10210-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10210-3_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10208-0

  • Online ISBN: 978-3-642-10210-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics