Advertisement

Meta-heuristic and Constraint-Based Approaches for Single-Line Railway Timetabling

  • Federico Barber
  • Laura Ingolotti
  • Antonio Lova
  • Pilar Tormos
  • Miguel A. Salido
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5868)

Introduction

This chapter is devoted to recent advances in heuristic and metaheuristic procedures, arising from the areas of Computer Science and Artificial Intelligence, which are able to cope with large scale problems as those in single-line railway timetable optimization. Timetable design is a central problem in railway planning. In the basic timetabling problem, we are given a line plan as well as demand and infrastructure information. The goal is to compute timetables for passengers and cargo trains that satisfy infrastructure capacity and achieve multicriteria objectives: minimal passenger waiting time (both at changeovers and onboard), efficient use of trains, etc. Due to its central role in the planning process of railway scheduling, timetable design has many interfaces with other classical problems: line planning, vehicle scheduling, and delay management.

Keywords

Execution Time Schedule Problem Constraint Satisfaction Problem Train Schedule Railway Infrastructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abril, M., Salido, M.A., Barber, F., Ingolotti, L., Lova, A., Tormos, P.: Distributed models in railway industry. In: Proc. of the 1st Workshop on Industrial Applications of Distributed Intelligent Systems, INADIS 2006 (2006)Google Scholar
  2. 2.
    Angles-Domínguez, M.I., Terashima-Marín, H.: Stability analysis for dynamic constraint satisfaction problems. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 169–178. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Barber, F., Salido, M.A., Ingolotti, L., Abril, M., Lova, A., Tormos, P.: An interactive train scheduling tool for solving and plotting running maps. In: Session of Technology Transfer on Artificial Intelligence, TTIA (2003)Google Scholar
  4. 4.
    Barber, F., Tormos, P., Lova, A., Ingolotti, L., Salido, M.A., Abril, M.: A Decision Support System for railway Timetabling (MOM): the Spanish case. In: Computers in Railways X: Computer System Design and Operation in the Railway and Other Transit Systems. Computer in Railways, vol. 10, pp. 235–244. WIT Press (2006)Google Scholar
  5. 5.
    Bistarelli, S., Fargier, H., Montanary, U., Rossi, F., Schiech, T., Verfailillie, G.: Semiring-based csps and valued csps: Frameworks, properties, and comparison. Constraints 4(3) (1999)Google Scholar
  6. 6.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. Journal of ACM 44(2), 201–236 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Cp-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. JAIR (21), 135–191 (2004)Google Scholar
  8. 8.
    Cai, X., Goh, C.J.: A fast heuristic for the train scheduling problem. Computers and Operation Research 21(5), 499–510 (1994)zbMATHCrossRefGoogle Scholar
  9. 9.
    Caprara, A., Monaci, M., Toth, P., Guida, P.: A lagrangian heuristic algorithm for a real -world train timetabling problem. Discrete Applied Mathematics 154, 738–753 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Carey, M., Lockwood, D.: A model, algorithms and strategy for train pathing. The Journal of the Operational Research Society 46(8), 988–1005 (1995)zbMATHCrossRefGoogle Scholar
  11. 11.
    Dobuis, D., Fargier, H., Prade, H.: The calculus of fuzzy restrictions as a basis for flexible constraint satisfaction. In: Proc. of FUZZ-IEEE 1993, pp. 1131–1136 (1993)Google Scholar
  12. 12.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  13. 13.
    Higgins, A., Kozan, E., Ferreira, L.: Heuristic techniques for single line train scheduling. Journal of Heuristics 3(1), 43–62 (1997)zbMATHCrossRefGoogle Scholar
  14. 14.
    Ingolotti, L., Lova, A., Barber, F., Tormos, P., Salido, M.A., Abril, M.: New heuristics to solve the csop railway timetabling problem. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031, pp. 400–409. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Jovanovic, D., Harker, P.T.: Tactical scheduling of rail operations: The scan i system. Transportation Science 25(1), 46–64 (1991)CrossRefGoogle Scholar
  16. 16.
    Karypis, G., Kumar, V.: A parallel algorithm for multilevel graph partitioning and sparse matrix ordering. Journal of Parallel and Distributed Computing 48, 71–85 (1998)CrossRefGoogle Scholar
  17. 17.
    Kelley, J.: The critical-path method: Resources planning and scheduling. In: Industrial Scheduling (1963)Google Scholar
  18. 18.
    Kroon, L., Peeters, L.: A variable time model for cycling railway timetabling. Transportation Science 37(2), 198–212 (2003)CrossRefGoogle Scholar
  19. 19.
    Kwan, R.K.S., Mistry, P.: A co-evolutionary algorithm for train timetabling. In: IEEE Press (ed.) Congress on Evolutionary Computation, pp. 2142–2148 (2003)Google Scholar
  20. 20.
    Liebchen, C.: Periodic Timetable Optimization in Public Transport. dissertation.de - Verlag im Internet GmbH 2006 (2006)Google Scholar
  21. 21.
    Nachtigall, K., Voget, S.: A genetic algorithm approach to periodic railway synchronization. Computers and Operations Research 23, 453–463 (1996)zbMATHCrossRefGoogle Scholar
  22. 22.
    Neagu, N., Dorer, K., Calisti, M.: Solving distributed delivery problems with agent-based technologies and constraint satisfaction techniques. In: Proceedings of AAAI Spring Symposium (2006)Google Scholar
  23. 23.
    Odijk, M.: A constraint generation algorithm for the construction of periodic railway timetables. Transportation Research Part B 30(6), 455–464 (1996)CrossRefGoogle Scholar
  24. 24.
    Rossi, F., Sperduti, A.: Acquiring both constraint and solution preferences in interactive constraint systems. Constraints 9(4), 311–332 (2004)CrossRefGoogle Scholar
  25. 25.
    Salido, M.A., Abril, M., Barber, F., Ingolotti, L., Tormos, P., Lova, A.: Topological Constraint in Periodic Train Scheduling. In: Planning, Scheduling and Constraint Satisfaction: from Theory to Practice. Frontiers in Artificial Intelligence and Applications, vol. 117, pp. 11–20. IOS Press, Amsterdam (2004)Google Scholar
  26. 26.
    Salido, M.A., Abril, M., Barber, F., Ingolotti, L., Tormos, P., Lova, A.: Domain dependent distributed models for railway scheduling. International Journal Knowledge Based Systems 20(2), 186–194 (2007)CrossRefGoogle Scholar
  27. 27.
    Salido, M.A., Barber, F.: Distributed csps by graph partitioning. Applied Mathematics and Computation (Elsevier) 183, 491–498 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Schirmer, A., Riesenberg, S.: Parameterized heuristics for project scheduling- biased random sampling methods. Technical report, Institute fr Betriebswirtschaftslehre der UNIVERSITT KIEL (1997)Google Scholar
  29. 29.
    Serafini, P., Ukovich, W.: A mathematical for periodic scheduling problems. SIAM J. Discret. Math. 2(4), 550–581 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems. SIAM J. on Discrete Mathematics 2, 550–581 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Silva de Oliveira, E.: Solving Single-Track Railway Scheduling Problem Using Constraint Programming. PhD thesis, The University of Leeds, School of Computing (September 2001)Google Scholar
  32. 32.
    Szpigel, B.: Optimal train scheduling on a single track railway. In: Roos, M. (ed.) Proceedings of IFORS Conference on Operational Research 1972, pp. 343–352 (1973)Google Scholar
  33. 33.
    Tormos, P., Lova, A.: A competitive heuristic solution technique for resource-constrained project scheduling. Annals Of Operations Research 102, 65–81 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Wallace, R.J., Freuder, E.C.: Stable solutions for dynamic constraint satisfaction problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 447–456. Springer, Heidelberg (1998)Google Scholar
  35. 35.
    Yokoo, M.: Preface. In: Proc. of AAMAS 2006. 7th Intl. Workshop on Distributed Constraint Reasoning (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Federico Barber
    • 1
  • Laura Ingolotti
    • 1
  • Antonio Lova
    • 1
  • Pilar Tormos
    • 1
  • Miguel A. Salido
    • 1
  1. 1.Instituto de Automática e Informática IndustrialUniversidad Politécnica de Valencia 

Personalised recommendations