Advertisement

Recoverable Robustness in Shunting and Timetabling

  • Serafino Cicerone
  • Gianlorenzo D’Angelo
  • Gabriele Di Stefano
  • Daniele Frigioni
  • Alfredo Navarra
  • Michael Schachtebeck
  • Anita Schöbel
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5868)

Abstract

In practical optimization problems, disturbances to a given instance are unavoidable due to unpredictable events which can occur when the system is running. In order to face these situations, many approaches have been proposed during the last years in the area of robust optimization. The basic idea of robustness is to provide a solution which is able to keep feasibility even if the input instance is disturbed, at the cost of optimality. However, the notion of robustness in every day life is much broader than that pursued in the area of robust optimization so far. In fact, robustness is not always suitable unless some recovery strategies are introduced. Recovery strategies are some capabilities that can be used when disturbing events occur, in order to keep the feasibility of the pre-computed solution. This suggests to study robustness and recoverability in a unified framework. Recently, a first tentative of unifying the notions of robustness and recoverability into a new integrated notion of recoverable robustness has been done in the context of railway optimization.

In this paper, we review the recent algorithmic results achieved within the recoverable robustness model in order to evaluate the effectiveness of this model. To this aim, we concentrate our attention on two problems arising in the area of railway optimization: the shunting problem and the timetabling problem. The former problem regards the reordering of freight train cars over hump yards while the latter one consists in finding passenger train timetables in order to minimize the overall passengers traveling time. We also report on a generalization of recoverable robustness called multi-stage recoverable robustness which aims to extend recoverable robustness when multiple recovery phases are required.

Keywords

Robust Optimization Robust Solution Robust Algorithm Timetabling Problem Slack Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bayer, H.G., Sendhoff, B.: Robust Optimization - A Comprehensive Survey. Computer Methods in Applied Mechanics and Engineering 196(33-34), 3190–3218 (2007)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Mathematical Programming: Special Issue on Robust Optimization, vol. 107. Springer, Berlin (2006)Google Scholar
  3. 3.
    Bertsimas, D., Sim, M.: The price of robustness. Operations Research 52(1), 35–53 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming. Springer, New York (1997)zbMATHGoogle Scholar
  5. 5.
    Borodin, A., El-Yaniv, R. (eds.): Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  6. 6.
    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A.: Robust Algorithms and Price of Robustness in Shunting Problems. In: Proceedings of the 7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS 2007),Schloss Dagstuhl Seminar proceedings, pp. 175–190 (2007)Google Scholar
  7. 7.
    Cicerone, S., Di Stefano, G., Schachtebeck, M., Schöbel, A.: Multi-stage recoverable robustness problems. Technical Report ARRIVAL-TR-0226, ARRIVAL Project (2009)Google Scholar
  8. 8.
    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A.: Robust algorithms and price of robustness in shunting problems. Technical Report ARRIVAL-TR-0072, ARRIVAL project (2007)Google Scholar
  9. 9.
    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A.: Delay management problem: Complexity results and robust algorithms. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 458–468. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A.: Recoverable robust timetabling for single delay: Complexity and polynomial algorithms for special cases. Journal of Combinatorial Optimization. Tech. Rep. ARRIVAL-TR-0172, ARRIVAL project (to appear, 2009)Google Scholar
  11. 11.
    Cicerone, S., Di Stefano, G., Schachtebeck, M., Schöbel, A.: Dynamic algorithms for recoverable robustness problems. In: Proceedings of the 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS 2008). Schloss Dagstuhl Seminar proceedings, Technical Report ARRIVAL-TR-0130 (2008)Google Scholar
  12. 12.
    D’Angelo, G., Di Stefano, G., Navarra, A.: Recoverable robust timetables on trees. Technical Report ARRIVAL-TR-0163, ARRIVAL project (2008)Google Scholar
  13. 13.
    D’Angelo, G., Di Stefano, G., Navarra, A.: Evaluation of recoverable-robust timetables on tree networks. In: Proceedings of the 20th International Workshop on Combinatorial Algorithms (IWOCA2009) (to appear, 2009)Google Scholar
  14. 14.
    D’Angelo, G., Di Stefano, G., Navarra, A.: Recoverable-robust timetables for trains on single-line corridors. In: Proceedings of the 3rd International Seminar on Railway Operations Modelling and Analysis - Engineering and Optimisation Approaches, RailZurich 2009 (to appear, 2009)Google Scholar
  15. 15.
    De Giovanni, L., Heilporn, G., Labbé, M.: Optimization models for the delay management problem in public transportation. European Journal of Operational Research 189(3), 762–774 (2007)Google Scholar
  16. 16.
    Fischetti, M., Monaci, M.: Robust optimization through branch-and-price. In: Proceedings of the 37th Annual Conference of the Italian Operations Research Society, AIRO (2006)Google Scholar
  17. 17.
    Fischetti, M., Monaci, M.: Light robustness. Technical Report ARRIVAL-TR-0066, ARRIVAL project (2008)Google Scholar
  18. 18.
    Fischetti, M., Monaci, M.: Light robustness. In: Robust and Online Large-Scale Optimization, pp. 62–85. Springer, Heidelberg (2009)Google Scholar
  19. 19.
    Gatto, M., Glaus, B., Jacob, R., Peeters, L., Widmayer, P.: Railway delay management: Exploring its algorithmic complexity. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 199–211. Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Gatto, M., Jacob, R., Peeters, L., Schöbel, A.: The Computational Complexity of Delay Management. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 227–238. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Gatto, M., Jacob, R., Peeters, L., Widmayer, P.: Online Delay Management on a Single Train Line. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 306–320. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Ginkel, A., Schöbel, A.: The bicriteria delay management problem. Transportation Science 41(4), 527–538 (2007)CrossRefGoogle Scholar
  23. 23.
    Hansman, R.S., Zimmermann, U.T.: Optimal sorting of rolling stock at hump yard. In: Mathematics - Key Technology for the Future: Joint Project Between Universities and Industry, pp. 189–203. Springer, Heidelberg (2008)Google Scholar
  24. 24.
    Jacob, R.: On shunting over a hump. Technical Report 576, Institute of Theoretical Computer Science, ETH Zürich (2007)Google Scholar
  25. 25.
    Jacob, R., Marton, P., Maue, J., Nunkesser, M.: Multistage methods for freight train classification. In: Proceedings of the 7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS 2007), pp. 158–174. Schloss Dagstuhl Seminar proceedings (2007)Google Scholar
  26. 26.
    Jacob, R., Marton, P., Maue, J., Nunkesser, M.: Multistage methods for freight train classification. Technical Report ARRIVAL-TR-0140, ARRIVAL project (2007)Google Scholar
  27. 27.
    Kall, P., Wallace, S.W.: Stochastic Programming. Wiley, Chichester (1994)zbMATHGoogle Scholar
  28. 28.
    Levy, F.K., Thompson, G.L., Wies, J.D.: The ABCs of the Critical Path Method. Graduate School of Business Administration. Harvard University (1963)Google Scholar
  29. 29.
    Liebchen, C., Lüebbecke, M., Möhring, R.H., Stiller, S.: Recoverable robustness. Technical Report ARRIVAL-TR-0066, ARRIVAL project (2007)Google Scholar
  30. 30.
    Liebchen, C., Lüebbecke, M., Möhring, R.H., Stiller, S.: The concept of recoverable robustness, linear programming recovery, and railway applications. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 1–27. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. 31.
    Liebchen, C., Stiller, S.: Delay resistant timetabling. Public Transport, Tech. Rep. ARRIVAL-TR-0056, ARRIVAL project (2008)(To appear)Google Scholar
  32. 32.
    Ruszczynski, A., Shapiro, A. (eds.): Stochastic Programming, Handbooks in Operations Research and Management Science, vol. 10. North-Holland, Amsterdam (2003)Google Scholar
  33. 33.
    Schöbel, A.: A model for the delay management problem based on mixed integer programming. Electronic Notes in Theoretical Computer Science 50(1) (2001)Google Scholar
  34. 34.
    Schöbel, A.: Integer programming approaches for solving the delay management problem. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 145–170. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  35. 35.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Serafino Cicerone
    • 1
  • Gianlorenzo D’Angelo
    • 1
  • Gabriele Di Stefano
    • 1
  • Daniele Frigioni
    • 1
  • Alfredo Navarra
    • 2
  • Michael Schachtebeck
    • 3
  • Anita Schöbel
    • 3
  1. 1.Dept of Electrical and Information EngineeringUniversity of L’AquilaItaly
  2. 2.Department of Mathematics and Computer ScienceUniversity of PerugiaItaly
  3. 3.Institute for Numerical and Applied MathematicsGeorg-August-UniversityGöttingenGermany

Personalised recommendations