Advertisement

Online Train Disposition: To Wait or Not to Wait?

  • Luzi Anderegg
  • Paolo Penna
  • Peter Widmayer
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5868)

Abstract

We deal with an online problem arising from bus/tram/train disposition problems. In particular, we look at the case in which the delay is unknown and the vehicle can only wait in a station so as to minimize the passengers’ waiting time.

We present deterministic polynomial-time optimal algorithms and matching lower bounds for several problem versions. In addition, all lower bounds also apply to randomized algorithms, thus implying that using randomization does not help.

Keywords

Competitive Ratio Online Algorithm Deterministic Algorithm Slack Time Rail Transit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adenso-Díaz, B., Gonzáles, M.O., Gonzáles-Torre, P.: On-line timetable re-scheduling in regional train services. Transportation Research 33B, 287–398 (1999)Google Scholar
  2. 2.
    Anderegg, L., Penna, P., Widmayer, P.: Online train disposition: to wait or not to wait? In: Proc. ATMOS (2002); also available in the Electronic Notes in Theoretical Computer Science 66(6), 32–41 (2002)Google Scholar
  3. 3.
    Bertossi, A., Carraresi, P., Gallo, G.: On some matching problems arising in vehicle scheduling models. Networks 17, 271–281 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  5. 5.
    Brucker, P., Hurink, J.L., Rolfes, T.: Routing of railway carriages: A case study. In: Memorandum No. 1498, Fac. of Mathematical Sciences. Univ. of Twente, Fac. of Math. Sciences (1999)Google Scholar
  6. 6.
    Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A.: Delay management problem: Complexity results and robust algorithms. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 458–468. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Dantzig, G., Fulkerson, D.: Minimizing the number of tankers to meet a fixed schedule. Nav. Res. Logistics Q 1, 217–222 (1954)CrossRefGoogle Scholar
  8. 8.
    Fiat, A., Woeginger, G. (eds.): Online Algorithms: The State of the Art. LNCS, vol. 1442. Springer, Heidelberg (1998)Google Scholar
  9. 9.
    Gatto, M., Glaus, B., Jacob, R., Peeters, L., Widmayer, P.: Railway delay management: Exploring its algorithmic complexity. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 199–211. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Gatto, M., Jacob, R., Peeters, L., Schöbel, A.: The computational complexity of delay management. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 227–238. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Gatto, M., Jacob, R., Peeters, L., Widmayer, P.: Online delay management on a single train line. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 306–320. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Ginkel, A.: Event-activity networks in delay management. Master’s thesis, University of Kaiserslautern (2001)Google Scholar
  13. 13.
    Ginkel, A., Schöbel, A.: To Wait or Not to Wait? The Bicriteria Delay Management Problem in Public Transportation. Transportation Science 41(4), 527 (2007)CrossRefGoogle Scholar
  14. 14.
    Heimburger, D.E., Herzenberg, A.J., Wilson, N.H.M.: Using simple simulation models in operational analysis of rail transit lines: Case of study of boston’s red line. Transportation Research Record 1677, 21–30 (1999)CrossRefGoogle Scholar
  15. 15.
    Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica 30(1), 175–193 (1906)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Mansilla, S.: Report on disposition of trains. Technical report, ETH Zürich (2001)Google Scholar
  17. 17.
    O’Dell, S.W., Wilson, N.H.M.: Optimal real-time control strategies for rail transit operations during disruptions. In: Computer-Aided Transit Scheduling. Lecture Notes in Economics and Math. Sys., pp. 299–323 (1999)Google Scholar
  18. 18.
    Schöbel, A.: A model for the delay management problem based on mixed-integer programming. In: Proc. ATMOS 2001 (2001); also available in the Electronic Notes in Theoretical Computer Science 50(1), 1–10 (2001)Google Scholar
  19. 19.
    Suhl, L., Biederbick, C., Kliewer, N.: Design of customer-oriented dispatching support for railways. In: Computer-Aided Scheduling of Public Transport. Lecture Notes in Economics and Mathematical Systems, vol. 505, pp. 365–386. Springer, Heidelberg (2001)Google Scholar
  20. 20.
    Zhu, P., Schnieder, E.: Determining traffic delays through simulation. In: Computer-Aided Scheduling of Public Transport. Lecture Notes in Economics and Math. Sys., pp. 387–398 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Luzi Anderegg
    • 1
  • Paolo Penna
    • 2
  • Peter Widmayer
    • 1
  1. 1.Institute for Theoretical Computer ScienceETH ZentrumZürichSwitzerland
  2. 2.Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”Università di SalernoBaronissiItaly

Personalised recommendations