Integrating Robust Railway Network Design and Line Planning under Failures

  • Ángel Marín
  • Juan A. Mesa
  • Federico Perea
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5868)


Traditionally, when designing robust transportation systems, one wants to increase the functionality of the system in presence of failures, even though they might not work optimally when no failures occur, which is the usual case. In this paper we make an attempt to integrate robust network design and line planning without decreasing the efficiency of the system when no failures occur. Therefore, extra costs must be met (price of robustness). Two different concepts of robustness are considered: one from the user’s point of view, which aims at minimizing total travel time, and one from the operator’s point of view, which aims at minimizing extra costs, both assuming possible disruptions.


Railway Network Total Travel Time Railway System Line Planning Fast Route 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbink, E., van den Berg, B., Kroon, L., Salomon, M.: Allocation of railway rolling stock for passenger trains. Transportation Science 38, 33–41 (2005)CrossRefGoogle Scholar
  2. 2.
    Bertsimas, D., Sim, M.: Robust Discrete Optimization and Network Flows. Mathematical Programming Series B 98, 49–71 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bertsimas, D., Sim, M.: The Price of Robustness. Operations Research 52, 35–53 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bruno, G., Gendreau, M., Laporte, G.: A heuristic for the location of a rapid transit line. Computers & Operations Research 29, 1–12 (2002)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bussieck, M.R., Kreuzer, P., Zimmermann, U.T.: Optimal lines for railway systems. European Journal of Operational Research 96, 54–63 (1996)CrossRefGoogle Scholar
  6. 6.
    Claessens, M.T., van Dijk, N.M., Zwaneveld, P.J.: Cost Optimal Allocation of Passenger Lines. European Journal of Operational Research 110, 474–489 (1998)zbMATHCrossRefGoogle Scholar
  7. 7.
    Cordeau, J.F., Soumis, F., Desrosiers, J.: A Benders Decomposition Approach for the Locomotive and Car Assignment Problem. Transportation Science 34, 133–149 (2000)zbMATHCrossRefGoogle Scholar
  8. 8.
    Cordeau, J.F., Toth, P., Vigo, D.: A Survey of Optimization Models for Train Routing and Scheduling. Transportation Science 32, 380–404 (1998)zbMATHCrossRefGoogle Scholar
  9. 9.
    Dufourd, H., Gendreau, M., Laporte, G.: Locating a Transit Line Using Tabu Search. Location Science 4, 1–19 (1996)zbMATHCrossRefGoogle Scholar
  10. 10.
    Gendreau, M., Laporte, G., Mesa, J.A.: Locating Rapid Transit Lines. Journal of Advanced Transportation 29, 145–162 (1995)CrossRefGoogle Scholar
  11. 11.
    Guihaire, V., Hao, J.K.: Transit network design and scheduling: A global review. Transportation Research Part A 42, 1251–1273 (2008)Google Scholar
  12. 12.
    Kontogiannis, S., Zaroliagis, C.: Robust Line Planning under Unknown Incentives and Elasticity of Frequencies. In: Fischetti, M., Widmayer, P. (eds.) ATMOS 2008. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2008)Google Scholar
  13. 13.
    Laporte, G., Marín, A., Mesa, J.A., Perea, F.: Designing Robust Rapid Transit Networks with Alternative Routes. Journal of Advanced Transportation (to appear, 2010) Google Scholar
  14. 14.
    Laporte, G., Mesa, J.A., Perea, F.: A Game Theoretic Framework for the Robust Railway Transit Network Design Problem. Transportation Research B, Technical Report ARRIVAL-TR-0171 (to appear, 2010)Google Scholar
  15. 15.
    Malcom, S., Zenios, S.A.: Robust Optimization for Power Systems Expansion under Uncertainty. Journal of the Operational Research Society 45, 1040–1049 (1994)Google Scholar
  16. 16.
    Marín, A., Salmerón, J.: Tactical Design of Rail Freight Networks. Part I: Exact and Heuristic Methods. European Journal of Operational Research 90, 26–44 (1996)zbMATHGoogle Scholar
  17. 17.
    Schóbel, A., Scholl, S.: Line Planning with Minimal Transfers. In: 5th Workshop on Algorithmic Methods and Models for Optimization of Railways, vol. 06901, Dagstuhl Seminar Proceedings (2006)Google Scholar
  18. 18.
    Scholl, S.: Customer-Oriented Line Planning. Ph.D. Thesis, University of Kaiserslautern (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ángel Marín
    • 1
  • Juan A. Mesa
    • 2
  • Federico Perea
    • 2
  1. 1.Department of Applied Mathematics and StatisticsMadrid Polytechnic UniversitySpain
  2. 2.Department of Applied Mathematics IIUniversity of SevilleSpain

Personalised recommendations