Advertisement

Real Traceable Signatures

  • Sherman S. M. Chow
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5867)

Abstract

Traceable signature scheme extends a group signature scheme with an enhanced anonymity management mechanism. The group manager can compute a tracing trapdoor which enables anyone to test if a signature is signed by a given misbehaving user, while the only way to do so for group signatures requires revealing the signer of all signatures. Nevertheless, it is not tracing in a strict sense. For all existing schemes, T tracing agents need to recollect all N′ signatures ever produced and perform RN′ “checks” for R revoked users. This involves a high volume of transfer and computations. Increasing T increases the degree of parallelism for tracing but also the probability of “missing” some signatures in case some of the agents are dishonest.

We propose a new and efficient way of tracing – the tracing trapdoor allows the reconstruction of tags such that each of them can uniquely identify a signature of a misbehaving user. Identifying N signatures out of the total of N′ signatures (N < < N′) just requires the agent to construct N small tags and send them to the signatures holder. N here gives a trade-off between the number of unlinkable signatures a member can produce and the efforts for the agents to trace the signatures. We present schemes with simple design borrowed from anonymous credential systems. Our schemes are proven secure respectively in the random oracle model and in the common reference string model (or in the standard model if there exists a trusted party for system parameters initialization).

Keywords

traceable signatures efficient tracing group signatures anonymity management bilinear groups standard model 

References

  1. 1.
    Au, M.H.: Personal communication (2009)Google Scholar
  2. 2.
    Au, M.H., Susilo, W., Mu, Y.: Constant-Size Dynamic k-TAA. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and Noninteractive Anonymous Credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact E-Cash and Simulatable VRFs Revisited. In: Boyen, X., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 114–131. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Boneh, D., Boyen, X.: Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups. J. Cryptology 21(2), 149–177 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin [12], pp. 41–55Google Scholar
  7. 7.
    Camenisch, J., Chaabouni, R., Shelat, A.: Efficient Protocols for Set Membership and Range Proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials from Bilinear Maps. In: Franklin [12], pp. 56–72Google Scholar
  10. 10.
    Choi, S.G., Park, K., Yung, M.: Short Traceable Signatures Based on Bilinear Pairings. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 88–103. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Dodis, Y., Yampolskiy, A.: A Verifiable Random Function with Short Proofs and Keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Franklin, M. (ed.): CRYPTO 2004. LNCS, vol. 3152. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  13. 13.
    Ge, H., Tate, S.R.: Traceable Signature: Better Efficiency and Beyond. In: Gavrilova, M., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3982, pp. 327–337. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Groth, J.: Fully Anonymous Group Signatures Without Random Oracles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Kiayias, A., Tsiounis, Y., Yung, M.: Traceable Signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Nguyen, L., Safavi-Naini, R.: Efficient and Provably Secure Trapdoor-Free Group Signature Schemes from Bilinear Pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    IEEE P1556 Working Group. VSC Project. Dedicated short range communications, DSRC (2003)Google Scholar
  20. 20.
    Teranishi, I., Sako, K.: k-Times Anonymous Authentication with a Constant Proving Cost. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 525–542. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sherman S. M. Chow
    • 1
  1. 1.Department of Computer Science, Courant Institute of Mathematical SciencesNew York UniversityUSA

Personalised recommendations