Information Theoretically Secure Multi Party Set Intersection Re-visited

  • Arpita Patra
  • Ashish Choudhary
  • C. Pandu Rangan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5867)


We re-visit the problem of secure multiparty set intersection (MPSI) in information theoretic settings. In [15], Li have proposed a protocol for MPSI with n = 3t + 1 parties, that provides information theoretic security, when t out of those n parties are corrupted by an active adversary having unbounded computing power. In [15], the authors have claimed that their protocol takes six rounds of communication and communicates \({\cal O}(n^4m^2)\) field elements, where each party has a set containing m field elements. However, we show that the round and communication complexity of the protocol in [15] is much more than what is claimed in [15]. We then propose a novel information theoretically secure protocol for MPSI with n ≥ 3t + 1, which significantly improves the ”actual” round and communication complexity of the protocol of [15]. Our protocols employ several tools which are of independent interest.


Multiparty Computation Information Theoretic Security 


  1. 1.
    Beerliová-Trubíniová, Z., Hirt, M.: Efficient Multi-party Computation with Dispute Control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-Secure MPC with Linear Communication Complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic Fault Tolerant Distributed Computation. In: 20th ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, New York (1988)Google Scholar
  4. 4.
    Berman, P., Garay, J.A., Perry, K.J.: Bit Optimal Distributed Consensus. Comp. Sci. Research, 313–322 (1992)Google Scholar
  5. 5.
    Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. J. of Comp. and Sys. Sci. 18(4), 143–154 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cramer, R., Damgård, I.: Multiparty Computation: An Introduction: Contemporary Cryptography. Birkhäuser, Basel (2005)Google Scholar
  7. 7.
    Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient Multiparty Computations Secure Against an Adaptive Adversary. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Damgård, I., Nielsen, J.B.: Scalable and Unconditionally Secure Multiparty Computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Fitzi, M., Garay, J., Gollakota, S., Pandu Rangan, C., Srinathan, K.: Round-Optimal and Efficient Verifiable Secret Sharing. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 329–342. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The Round Complexity of Verifiable Secret Sharing and Secure Multicast. In: 33rd ACM Symposium on Theory of Computing, pp. 580–589. ACM Press, New York (2001)Google Scholar
  12. 12.
    Hirt, M., Maurer, U., Przydatek, B.: Efficient Secure Multi-party Computation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Katz, J., Koo, C.Y., Kumaresan, R.: Improving the Round Complexity of VSS in Point-to-Point Networks. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 499–510. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Li, R., Wu, C.: An Unconditionally Secure Protocol for Multi-Party Set Intersection. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 226–236. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)zbMATHGoogle Scholar
  17. 17.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland Publishing Company, Amsterdam (1978)Google Scholar
  18. 18.
    Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with Honest Majority. In: 21st ACM Symposium on Theory of Computing, pp. 73–85. ACM Press, New York (1989)Google Scholar
  19. 19.
    Srinathan, K., Narayanan, A., Pandu Rangan, C.: Optimal Perfectly Secure Message Transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561. Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Yao, A.C.: Protocols for Secure Computations. In: 23rd IEEE Symposium on Foundations of Computer Science, pp. 160–164. IEEE Press, Los Alamitos (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Arpita Patra
    • 1
  • Ashish Choudhary
    • 1
  • C. Pandu Rangan
    • 1
  1. 1.Dept of Computer Science and EngineeringIIT MadrasChennaiIndia

Personalised recommendations