Skip to main content
  • 6223 Accesses

Abstract

Cathode sputtering [1, 2] is more frequently used in thin film technology than evaporation. The reasons for this are the following:

- High melting material or dielectrics with a high frequency generator/source can be sputtered from a solid target.

- Sputtering is a ballistic process in which the target remains relatively cold. The composition of the released particle flux corresponds to the stoichiometry of the sputtering target.

- Sputtering with a reactive gas or a mixture of gases generates films of chemical compounds with a defined stoichiometry from elementary target material.

- The sputtering process can be used to deposit large areas with very high lateral homogeneity.

- By ion bombardment, the substrates can be cleaned before coating, and the properties of the sputtered film can be influenced, e.g. adhesion, strength, structure, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Westwood WD (2003) Sputter Deposition AVS Education Committee Book Series, vol. 2.

    Google Scholar 

  2. Ziegler JF, Biersack JP, Littmark U (1984) The Stopping and Range of Ions in Solids Stopping and Ranges of Ions in Matter, vol. 1. Pergamon Press, New York.

    Google Scholar 

  3. Ortner K., M. Birkholz and T. Jung (2003). “Neue Entwicklungen beim Hohlkatoden-Gasflusssputtern”. Vac. Praxis (in German) 15: 236–239 M. Birkholz and T. Jung (2003). Vac. Praxis (in German) 15: 236–239.

    Google Scholar 

  4. Sigmund P (1987) Mechanisms and theory of physical sputtering by particle impact. Nucl Instr Meth Phys Res B 27:1

    Article  Google Scholar 

  5. Binder, K.: The Monte Carlo Method in Condensed Matter Physics. Springer, Berlin [u. a.] 1992, ISBN 3-540-54369-4; 2. Auflage, 1995, ISBN 3-540-60174-0

    Google Scholar 

  6. Binder, K., and David P. Landau: A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, Cambridge [u.a.] 2000, ISBN 0-521-65366-5; 3. Auflage, 2009, ISBN 978-0-521-76848-1

    Google Scholar 

  7. Laegreid, N. and G.K. Wehner: Sputtering yields of metals for Ar\({}^{+}\) and Ne\({}^{+}\) ions with energies from 50 to 600 \(\mathrm{e\kern-0.7ptV}\). J. Appl.Phys.32 (1961) pp. 365/369

    Google Scholar 

  8. Oechsner, H.: Ergebnisse zur Festkörperzerstäubung durch Ionenbeschuss Metalloberfläche. Ange. Elektrochemie 28 Jahr. (1974), pp. 449/455

    Google Scholar 

  9. Yamamura, Y., C. Mössner u. H. Oechsner: The bombarding-angle dependence of sputtering yields under various surface conditions. Rad.Eff. 103 (1987), pp. 25/43

    Google Scholar 

  10. Oechsner, H.: SNMS-investigations on the formation of sputter-generated molecules by atomic combination. Int. J.Mass.Spectr. Ion Proc. 103 (1990), pp. 32/43

    Google Scholar 

  11. Oechsner, H., H. Schoof u. E. Stumpe Sputtering of Ta\({}_{2}\)O\({}_{3}\) by Ar\({}^{+}\)-ions at energies below 1 keV. Surface 76 (1978), pp. 343/354

    Google Scholar 

  12. Wehner, G.K. and D. Rosenberg Angular distribution of sputtered material. J.Appl.Phys. 31 (1960), pp. 177/179

    Google Scholar 

  13. Yamamura, Y., C. Mössner and H. Oechsner Angular distribution of sputtered atoms from ionbombarded surfaces. Rad.Eff.165 (1984), pp.31/41

    Google Scholar 

  14. Linhard J (1965) Influence of cristal lattice on motion of energetic charged particles. K Dan Vidensk Selzk Mat Fys Medd 34(14):64

    Google Scholar 

  15. Gesang, W. R.: Struktureffekte bei der Zerstäubung von Germanium und kubisch flächenzentrierten Metallen unter Beschuss mit Ar\({}^{+}\)-ionen von 1 keV. Diss. TU Clausthal 1979

    Google Scholar 

  16. Silsbee RH (1957) Focusing in collision problems in solids. JApplPhys 28:1246–1250

    Article  Google Scholar 

  17. Andersen GS, Wehner GK (1960) Atom ejection patterns in single crystal sputtering. JApplPhys 31:2305–2313

    Article  Google Scholar 

  18. Lehmann, G. and P. Siegmund On the mechanism of sputtering. Phys.Stat.Sol. 16 (1966), pp507/512

    Google Scholar 

  19. Southern, A.L., W.R. Willis and M.T. Robinson Sputtering experiments with 1- to 5- keV Ar\({}^{+}\)ions. J.Appl.Phys. 34 (1963), pp. 153/163

    Google Scholar 

  20. Glocker, David A., and S. Ismat Shah (editors). Handbook of Thin Film Process Technology (2 vol. set). Bristol, U.K.: Institute of Physics Pub, 2002

    Google Scholar 

  21. Mattox DM (1998) Handbook of Physical Vapor Deposition (PVD) Processing: Film Formation, Adhesion, Surface Preparation and Contamination Control. Noyes Publications, Westwood, N.J.

    Google Scholar 

  22. Kishinevsky, L.M.: Estimation of electron potential emission yield dependence on metal and ion parameters. Rad. Eff. 19 (1973), pp. 23/27

    Google Scholar 

  23. Cuomo, J.J., and R.J. Gambino Incorporation of rare gas in sputtered amorphous metal films. J.Vac.Sci.Techn. 14(1977) Nr. 1, p.152

    Google Scholar 

  24. Nowick AS, Mader SR (1965) A hard-sphere model to simulate alloy thin films. IBM journal :358

    Google Scholar 

  25. Bunshah, Roitan F (eds) (1994) Handbook of Deposition Technologies for Films and Coatings: Science, Technology and Applications, 2nd edn. Materials science and process technology series. Noyes Publications, Park Ridge, N.J.

    Google Scholar 

  26. Oechsner, H. Electron cyclotron wave resonances and power adsorption effects in electrode less low pressure HF plasma with a superimposed static magnetic field. Plasma Phys. 16 (1974), pp. 835/844

    Google Scholar 

  27. Fredrichs R (1962) J Appl Phys 33:1898

    Article  Google Scholar 

  28. Depla D, Mahieu S (2008) Reactive Sputter Deposition. Springer,

    Book  Google Scholar 

  29. Nakamura, K., K. Magawa, K. Topuruda and S. Komiya Application of war resistant thick films formed by physical vapor deposition processes. Thin Solid Films 40 (1977), pp. 155/167

    Google Scholar 

  30. Haefer RA (1987) Oberflächen- und Dünnschicht-Technologie (Teil 1). Springer-Verlag, Berlin, Heidelberg, New York

    Book  Google Scholar 

  31. Vossen JC, Kern W (eds) (1978) Thin Film Processes. Academic Press, New York, pp 76–170

    Google Scholar 

  32. Butler HS, Kino GS (1963) Plasma sheath formation by radiofrequency fields. Phys Fluids 6(9):1346

    Article  Google Scholar 

  33. Window, B. and. N.: Charged particle fluxes from planar magnetron sputtering sources. J. Vac. Sci. Technol. A4 (1986), pp. 196/202

    Google Scholar 

  34. Window, B. and W.: Unbalanced dc magnetron as sources of high ion fluxes. J. Vac. Sci. Technol. A4 (1986), pp. 453/456

    Google Scholar 

  35. Münz, E.D.: The unbalanced magnetron: Current status of development. Surf.Coat.Technol. 48 (1991), pp. 81/94

    Google Scholar 

  36. Stjerna, B. and. G.G. Granquvist: Optical and electrical properties of SnO thin films made by reactive rf. magnetron sputtering. Thin Solid Film 193/194 (190), pp. 704/711

    Google Scholar 

  37. Peukert B, Scjmitty SU, Weigert (1991) Sputtertargets Metall, Forschung und Entwicklung. Degussa, Frankfurt/M, pp 255–272

    Google Scholar 

  38. Kukla R, Krug T, Ludwig R, Wilmers K (1990) A highest rate self-sputtering magnetron source. Vacuum 41:1968–1970

    Article  Google Scholar 

  39. Krug TG, Beisswenger S, Kukla R (1991) High Rate Reactive Sputtering with a New Planar Magnetron. 34 th. Annual SVC Conference Philadelphia, March

    Google Scholar 

  40. Wright M, Beardow KT (1986) Design advances and application of the rotable cyclindrical magnetron. JVacSciTechnol A 4(3):388–392

    Article  Google Scholar 

  41. Kienel, G.: Optical Layers Produced By Sputtering. Thin Solid Films 77 (1981), pp. 213/224

    Google Scholar 

  42. Kienel, G. and W. Stengel Herstellen optischer Schichten durch Kathodenzerstäubung. Vak.Techn. 27 (1978), pp. 204/211

    Google Scholar 

  43. McBridge, Michael W (1990) Optical Coaters. Breaking out of the box. Lasers & Optronics :34–38

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frey, H. (2015). Cathode Sputtering. In: Frey, H., Khan, H.R. (eds) Handbook of Thin-Film Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05430-3_6

Download citation

Publish with us

Policies and ethics