Skip to main content

Historical Review of Irreversible Electroporation in Medicine

  • Chapter
Irreversible Electroporation

Part of the book series: Series in Biomedical Engineering ((BIOMENG))

Abstract

The objective of this chapter is to present a historical review of the field of irreversible electroporation (IRE) in the context of its medical applications. Although relevant scientific observations were made since the 18th century, the electroporation phenomenon was not identified as an increase of membrane permeability until mid 20th century. After that, multiple applications of reversible electroporation emerged in vitro (DNA electrotransfer) and in vivo (electrogenetherapy and electrochemotherapy). Irreversible electroporation was tested commercially in the 60s as a bactericidal method for liquids and foods but its use in the context of medical applications was not studied until the early 2000s as an ablative method. The cell destruction mechanism of IRE is not based on thermal damage and this fact provides to IRE an important advantage over other physical ablation methods: the extracellular scaffolding, including the vessels, is preserved. Several surgical applications are now under study or even under clinical trial: ablation of hepatocarcinomas, ablation of prostate tumors, treatment of atrial fibrillation and treatment of vascular occurrences such as restenosis and atherosclerotic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, C., Smye, S.W., Robinson, M.P., Evans, J.A.: Membrane electroporation theories: a review. Medical & Biological Engineering & Computing 44, 5–14 (2006)

    Article  Google Scholar 

  2. Nollet, J.A.: Recherches sur les causes particulieres des phénoménes électriques. Chez H.L. Guerin & L.F. Delatour, Paris (1754)

    Google Scholar 

  3. Reilly, J.P.: Applied Bioelectricity: From Electrical Stimulation to Electropathology. Springer, New York (1998)

    Google Scholar 

  4. Prausnitz, M.R.: A practical assessment of transdermal drug delivery by skin electroporation. Advanced Drug Delivery Reviews 35, 61–76 (1999)

    Article  Google Scholar 

  5. Vanbever, R., Préat, V.: In vivo efficacy and safety of skin electroporation. Advanced Drug Delivery Reviews 35, 77–88 (1999)

    Article  Google Scholar 

  6. Noad, H.M.: Lectures on electricity; comprosing galvnism, magnetism, electro-magnetism, magneto- and thermo- electricity, and electo-physiology, 3rd edn. George Knight and Sons, London (1849)

    Google Scholar 

  7. Fuller, G.W.: Report on the investigations into the purification of the Ohio river water at Louisville Kentucky. D. Van Nostrand Company, New York (1898)

    Google Scholar 

  8. Rockwell, A.D.: The Medical and surgical uses of electricity: including the X-ray, Finsen light, vibratory therapeutics, and high-frequency currents. E.B. Treat & Company, New York (1903)

    Google Scholar 

  9. Abidor, I.G., Li, L.H., Hui, S.W.: Studies of cell pellets: II. Osmotic properties, electroporation, and related phenomena: membrane interactions. Biophys. J. 67, 427–435 (1994)

    Article  Google Scholar 

  10. Jex-Blake, A.J.: Death by electric currents and by lightning. The Goulstonian lectures for 1913. British Medical Journal 11, 425–552, 492–498, 548–552, 601–603 (1913)

    Article  Google Scholar 

  11. Lee, R.C., Gaylor, D.C., Bhatt, D., Israel, D.A.: Role of cell membrane rupture in the pathogenesis of electrical trauma. The Journal of Surgical Research 44, 709–719 (1988)

    Article  Google Scholar 

  12. O’Keefe Gatewood, M., Zane, R.D.: Lightning injuries. Emergency Medicine Clinics of North America 22, 369–403 (2004)

    Article  Google Scholar 

  13. Al-Khadra, A., Nikolski, V., Efimov, I.R.: The role of electroporation in defibrillation. Circulation Research 87, 797–804 (2000)

    Google Scholar 

  14. Christie, R.V., Binger, C.A.L.: An experimental study of diathermy: iv. Evidence for the penetration of high frequency currents through the living body. Journal of Experimental Medicine 46, 715–734 (1927)

    Article  Google Scholar 

  15. Weinberg, E.D., Ward, G.E.: Diathermy and regeneration of bone. Archives of Surgery 28, 1121–1129 (1934)

    Google Scholar 

  16. McKinley, G.M.: Short electric wave radiation in biology. In: Duggar, B.M. (ed.) Biological effects of radiation, vol. 1, pp. 541–558. McGraw-Hill Book Co., New York (1936)

    Google Scholar 

  17. Hodgkin, A.L.: The ionic basis of electrical activity in nerve and muscle. Biological reviews of the Cambridge Philosophical Society 26, 339–409 (1951)

    Article  Google Scholar 

  18. Fricke, H.: A mathematical treatment of the electric conductivity and capacity of disperse systems. II. The capacity of a suspension of conducting spheroids surrounded by a non-conducting membrane for a current of low frequency. Physical Review 26 (1925)

    Google Scholar 

  19. Crowley, J.M.: Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. Biophys. J. 13, 711–724 (1973)

    Article  Google Scholar 

  20. Frankenhaeuser, B., Widén, L.: Anode break excitation in desheathed frog nerve. The Journal of Physiology 131, 243–247 (1956)

    Google Scholar 

  21. Biedermann, W.: Electro-physiology, vol. 2. Macmillan, London (1898)

    Google Scholar 

  22. Stämpfli, R., Willi, M.: Membrane potential of a ranvier node measured after electrical destruction of its membrane. Experimentia 13, 297–298 (1957)

    Article  Google Scholar 

  23. Stämpfli, R.: Reversible electrical breakdown of the excitable membrane of a Ranvier node. Anais da Academia Brasileira de Ciencias 30, 57–63 (1957)

    Google Scholar 

  24. Toepfl, S., Mathys, A., Heinz, V., Knorr, D.: Review: Potential of High Hydrostatic Pressure and Pulsed Electric Fields for Energy Efficient and Environmentally Friendly Food Processing. Food Reviews International 22, 405–423 (2006)

    Article  Google Scholar 

  25. Burton, H.: A survey of literature on bacterial effects of short electromagnetic waves. In: National Institute for Research in Dairying, Shinfield, England (1949)

    Google Scholar 

  26. Burton, H.: Effects of Radio-Frequency Voltages on Bacteria. Nature 166, 434 (1950)

    Article  Google Scholar 

  27. Nyrop, J.E.: A Specific Effect of High-Frequency Electric Currents on Biological Objects. Nature 157, 51–52 (1946)

    Article  Google Scholar 

  28. Doevenspeck, H.: Influencing cells and cell walls by electrostatic impulses. Fleishwirtshaft 13, 986–987 (1961)

    Google Scholar 

  29. Sale, A.J.H., Hamilton, W.A.: Effects of high electric fields on microorganisms. 1. Killing of bacteria and yeasts. Biochimica et Biophysica Acta 148, 781–788 (1967)

    Google Scholar 

  30. Hamilton, W.A., Sale, A.J.H.: Effects of high electric fields on microorganisms. 2. Mechanism of action of the lethal effect. Biochimica et Biophysica Acta 148, 789–800 (1967)

    Google Scholar 

  31. Sale, A.J.H., Hamilton, W.A.: Effects of high electric fields on microorganisms. 3. Lysis of erythrocytes and protopasts. Biochimica et Biophysica Acta 163, 37–43 (1968)

    Article  Google Scholar 

  32. Maxwell, J.C.: A Treatise on Electricity and Magnetism, 3rd edn. Clarendon Press, Oxford (1904)

    Google Scholar 

  33. Cole, K.S.: Electric impedance of suspensions of spheres. J. Gen. Physiol. 12, 29–36 (1928)

    Article  Google Scholar 

  34. Miklavcic, D., Kotnik, T.: Electroporation for Electrochemotherapy and Gene Therapy. In: Rosch, P.J., Markov, M.S. (eds.) Bioelectromagnetic Medicine, pp. 637–656. Informa Health Care, New York (2004)

    Google Scholar 

  35. Neumann, E., Rosenheck, K.: Permeability changes induced by electric impulses in vesicular membranes. The Journal of Membrane Biology 29, 279–290 (1972)

    Article  Google Scholar 

  36. Zimmermann, U., Pilwat, G., Riemann, F.: Dielectric Breakdown of Cell Membranes. Biophys. J. 14, 881–899 (1974)

    Article  Google Scholar 

  37. Riemann, F., Zimmermann, U., Pilwat, G.: Release and uptake of haemoglobin and ions in red blood cells induced by dielectric breakdown. Biochimica et Biophysica Acta 394, 449–462 (1975)

    Article  Google Scholar 

  38. Kinosita, K.J., Tsong, T.Y.: Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268, 438–441 (1977)

    Article  Google Scholar 

  39. Belov, S.V.: Effects of high-frequency current parameters on tissue coagulation. Biomedical Engineering 12, 209–211 (1978)

    Article  Google Scholar 

  40. Zimmermann, U.: Electric field-mediated fusion and related electrical phenomena. Biochimica et Biophysica Acta 694, 227–277 (1982)

    Google Scholar 

  41. Ramos, C., Teissie, J.: Electrofusion: a biophysical modification of cell membrane and a mechanism in exocytosis. Biochimie 82, 511–518 (2000)

    Article  Google Scholar 

  42. Neumann, E., Schaeffer-Ridder, M., Wang, Y., Hofschneider, P.H.: Gene transfer into mouse lymphoma cells by electroporation in high electric fields. EMBO J. 1, 841–845 (1982)

    Google Scholar 

  43. Okino, M., Mohri, H.: Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Japanese Journal of Cancer Research 78, 1319–1321 (1987)

    Google Scholar 

  44. Orlowskim, S., Belehradek, J.J., Paoletti, C., Mir, L.M.: Transient electropermeabilization of cells in culture. Increase of the cytotoxicity of anticancer drugs. Biochemical pharmacology 34, 4727–4733 (1988)

    Article  Google Scholar 

  45. Powell, K.T., Morgenthaler, A.W., Weaver, J.C.: Tissue electroporation. Observation of reversible electrical breakdown in viable frog skin. Biophys. J. 56, 1163–1171 (1989)

    Article  Google Scholar 

  46. Prausnitz, M.R., Bose, V.G., Langer, R., Weaver, J.C.: Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc. Natl. Acad. Sci. USA 90, 10504–10508 (1993)

    Article  Google Scholar 

  47. Lee, R.C., Kolodney, M.S.: Electrical Injury Mechanisms: Electrical Breakdown of Cell Membranes. Plastic & Reconstructive Surgery 80, 672–679 (1987)

    Article  Google Scholar 

  48. Neumann, E., Sowers, A.E., Jordan, C.A.: Electroporation and Electrofusion in Cell Biology. Plenum Press, New York (1989)

    Google Scholar 

  49. Potter, H., Weir, L., Leder, P.: Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc. Natl. Acad. Sci. USA 81, 7161–7165 (1984)

    Article  Google Scholar 

  50. Nickoloff, J.A.: Electroporation Protocols for Microorganisms. Humana Press, Totowa (1995)

    Google Scholar 

  51. Titomirov, A.V., Sukharev, S., Kistanova, E.: In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochimica et Biophysica Acta 1088, 131–134 (1991)

    Google Scholar 

  52. Daud, A.I., DeConti, R.C., Andrews, S., Urbas, P., Riker, A.I., Sondak, V.K., Munster, P.N., Sullivan, D.M., Ugen, K.E., Messina, J.L., Heller, R.: Phase I Trial of Interleukin-12 Plasmid Electroporation in Patients With Metastatic Melanoma. J. Clin. Oncol. 26, 5896–5903 (2008)

    Article  Google Scholar 

  53. Tamura, T., Sakata, T.: Application of In Vivo Electroporation to Cancer Gene Therapy. Current Gene Therapy 3, 59 (2003)

    Article  Google Scholar 

  54. Jaroszeski, M.J., Heller, R., Gilbert, R.: Electrochemotherapy, electrogenetherapy, and transdermal drug delivery: electrically mediated delivery of mollecules to cells, vol. 37. Humana Press, Totowa (2000)

    Google Scholar 

  55. Mir, L.M., Moller, P.H., André, F., Gehl, J.: Electric Pulse-Mediated Gene Delivery to Various Animal Tissues. In: Huang, L., Hung, M.-C., Wagner, E. (eds.) Advances in Genetics, vol. 54, pp. 83–114. Academic Press, London (2005)

    Google Scholar 

  56. Andre, F., Mir, L.M.: DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Therapy 11, S33–S42 (2004)

    Article  Google Scholar 

  57. Mir, L.M., Orlowski, S., Belehradek, J.J., Paoletti, C.: Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. European Journal of Cancer 27, 68–72 (1991)

    Article  Google Scholar 

  58. Mir, L.M., Belehradek, M., Domenge, C., Orlowski, S., Poddevin, B., Belehradek, J.J., Schwaab, G., Luboinski, B., Paoletti, C.: Electrochemotherapy, a new antitumor treatment: first clinical trial. Comptes Rendus de l’Academie des Sciences Serie III Sciences de la Vie 313, 613–618 (1991)

    Google Scholar 

  59. Mir, L.M., Gehl, J., Sersa, G., Collins, C.G., Garbay, J.-R., Billard, V., Geertsen, P.F., Rudolf, Z., O’Sullivan, G.C., Marty, M.: Standard operating procedures of the electrochemotherapy: Instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodes. European Journal of Cancer Supplements 4, 14–25 (2006)

    Article  Google Scholar 

  60. Marty, M., Sersa, G., Garbay, J.R., Gehl, J., Collins, C.G., Snoj, M., Billard, V., Geertsen, P.F., Larkin, J.O., Miklavcic, D., Pavlovic, I., Paulin-Kosir, S.M., Cemazar, M., Morsli, N., Soden, D.M., Rudolf, Z., Robert, C., O’Sullivan, G.C., Mir, L.M.: Electrochemotherapy - An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. European Journal of Cancer Supplements 4, 3–13 (2006)

    Article  Google Scholar 

  61. Sersa, G.: The state-of-the-art of electrochemotherapy before the ESOPE study; advantages and clinical uses. European Journal of Cancer Supplements 4, 52–59 (2006)

    Article  Google Scholar 

  62. Prausnitz, M.R., Mitragotri, S., Langer, R.: Current status and future potential of transdermal drug delivery. Nature Reviews. Drug discovery 3, 115–124 (2004)

    Article  Google Scholar 

  63. Bhatt, D.L., Gaylor, D.C., Lee, R.C.: Rhabdomyolysis Due to Pulsed Electric Fields. Plastic and Reconstructive Surgery 86(1), 1–11 (1990)

    Article  Google Scholar 

  64. Abramov, G.S., Bier, M., Capelli-Schellpfeffer, M., Lee, R.C.: Alteration in sensory nerve function following electrical shock. Burns 22, 602–606 (1996)

    Article  Google Scholar 

  65. Bier, M., Hammer, S.M., Canaday, D.J., Lee, R.C.: Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells. Bioelectromagnetics 20, 194–201 (1999)

    Article  Google Scholar 

  66. Lee, R.C., River, L.P., Pan, F.S., Ji, L., Wollmann, R.L.: Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc. Natl. Acad. Sci. USA 89, 4524–4528 (1992)

    Article  Google Scholar 

  67. Piñero, J., Lopez-Baena, M., Ortiz, T., Cortes, F.: Apoptotic and necrotic cell death are both induced by electroporation in HL60 human promyeloid leukaemia cells. Apoptosis 2, 330–336 (1997)

    Article  Google Scholar 

  68. Hofmann, F., Ohnimus, H., Scheller, C., Strupp, W., Zimmermann, U., Jassoy, C.: Electric field pulses can induce apoptosis. The Journal of Membrane Biology 169, 103–109 (1999)

    Article  Google Scholar 

  69. Ramirez, L.H., Orlowski, S., An, D., Bindoula, G., Dzodic, R., Ardouin, P., Bognel, C., Belehradek, J.J., Munck, J.N., Mir, L.M.: Electrochemotherapy on liver tumours in rabbits. British Journal of Cancer 77, 2104–2111 (1998)

    Google Scholar 

  70. Gehl, J., Skovsgaard, T., Mir, L.M.: Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochimica et Biophysica Acta 1569, 51–58 (2002)

    Google Scholar 

  71. Sersa, G., Cemazar, M., Parkins, C.S., Chaplin, D.J.: Tumour blood flow changes induced by application of electric pulses. European Journal of Cancer 35, 672–677 (1999)

    Article  Google Scholar 

  72. Sersa, G., Jarm, T., Kotnik, T., Coer, A., Podkrajsek, M., Sentjurc, M., Miklavcic, D., Kadivec, M., Kranjc, S., Secerov, A., Cemazar, M.: Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. British Journal of Cancer 98, 388–398 (2008)

    Article  Google Scholar 

  73. Rubinsky, B., Edd, J., Horowitz, L.: Electroporation to interrupt blood flow. US 2005/0171574 A1, USPTO, ed. The Regents of the University of California, USA (2004)

    Google Scholar 

  74. Palanker, D., Vankov, A., Freyvert, Y., Huie, P.: Pulsed electrical stimulation for control of vasculature: temporary vasoconstriction and permanent thrombosis. Bioelectromagnetics 29, 100–107 (2008)

    Article  Google Scholar 

  75. Schoenbach, K.H., Peterkin, F.E., Alden, R.W.I., Beebe, S.J.: The effect of pulsed electric fields on biological cells:experiments and applications. IEEE Trans. Plasma Science 25, 284–292 (1997)

    Article  Google Scholar 

  76. Schoenbach, K.H., Beebe, S.J., Buescher, E.S.: Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22, 440–448 (2001)

    Article  Google Scholar 

  77. Sun, Y., Vernier, P.T., Behrend, M., Marcu, L., Gundersen, M.A.: Electrode microchamber for noninvasive perturbation of mammalian cells with nanosecond pulsed electric fields. IEEE Trans. NanoBioscience 4, 277–283 (2005)

    Article  Google Scholar 

  78. Jordan, D.W., Uhler, M.D., Gilgenbach, R.M., Lau, Y.Y.: Enhancement of cancer chemotherapy in vitro by intense ultrawideband electric field pulses. Journal of Applied Physics 99, 094701 (2006)

    Article  Google Scholar 

  79. Frey, W., White, J.A., Price, R.O., Blackmore, P.F., Joshi, R.P., Nuccitelli, R., Beebe, S.J., Schoenbach, K.H., Kolb, J.F.: Plasma Membrane Voltage Changes during Nanosecond Pulsed Electric Field Exposure. Biophys. J. 90, 3608–3615 (2006)

    Article  Google Scholar 

  80. Vernier, P.T., Sun, Y., Chen, M.-T., Gundersen, M.A., Craviso, G.L.: Nanosecond electric pulse-induced calcium entry into chromaffin cells. Bioelectrochemistry 73, 1–4 (2008)

    Article  Google Scholar 

  81. Smith, K.C., Gowrishankar, T.R., Esser, A.T., Stewart, D.A., Weaver, J.C.: The Spatially Distributed Dynamic Transmembrane Voltage of Cells and Organelles due to 10-ns Pulses: Meshed Transport Networks. IEEE Trans. Plasma Science 34, 1394–1404 (2006)

    Article  Google Scholar 

  82. Pakhomov, A.G., Kolb, J.F., White, J.A., Joshi, R.P., Xiao, S., Schoenbach, K.H.: Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics 28, 655–663 (2007)

    Article  Google Scholar 

  83. Beebe, S.J., Fox, P.M., Rec, L.J., Somers, K., Stark, R.H., Schoenbach, K.H.: Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. IEEE Trans. Plasma Science 30, 286–292 (2002)

    Article  Google Scholar 

  84. Nuccitelli, R., Pliquett, U., Chen, X., Ford, W., James Swanson, R., Beebe, S.J., Kolb, J.F., Schoenbach, K.H.: Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochemical and Biophysical Research Communications 343, 351–360 (2006)

    Article  Google Scholar 

  85. Garon, E.B., Sawcer, D., Vernier, P.T., Tang, T., Sun, Y., Marcu, L., Gundersen, M.A., Koeffler, H.P.: In vitro and in vivo evaluation and a case report of intense nanosecond pulsed electric field as a local therapy for human malignancies. International Journal of Cancer 121, 675–682 (2007)

    Article  Google Scholar 

  86. Yao, C., Sun, C., Mi, Y., Xiong, L., Wang, S.: Experimental studies on Killing and inhibiting effects of steep pulsed electric field (SPEF) to target cancer cell and solid tumor. IEEE Trans. Plasma Science 32, 1626–1633 (2004)

    Article  Google Scholar 

  87. Davalos, R.V., Rubinsky, B.: Tissue ablation with irreversible electroporation. US 2007/0043345 A1, USPTO, ed. The Regents of the University of California, USA (2004)

    Google Scholar 

  88. Davalos, R.V., Mir, L.M., Rubinsky, B.: Tissue Ablation with Irreversible Electroporation. Ann. Biomed. Eng. 33, 223 (2005)

    Article  Google Scholar 

  89. Miller, L., Leor, J., Rubinsky, B.: Cancer cells ablation with irreversible electroporation. Technology in Cancer Research and Treatment 4, 699–706 (2005)

    Google Scholar 

  90. Edd, J., Horowitz, L., Davalos, R.V., Mir, L.M., Rubinsky, B.: In-Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporation. IEEE Trans. Biomed. Eng. 53, 1409–1415 (2006)

    Article  Google Scholar 

  91. Rubinsky, B., Onik, G., Mikus, P.: Irreversible electroporation: a new ablation modality – clinical implications. Technology in Cancer Research and Treatment 6, 37–48 (2007)

    Google Scholar 

  92. Edd, J.F., Davalos, R.V.: Mathematical modeling of irreversible electroporation for treatment planning. Technology in Cancer Research and Treatment 6, 275–286 (2007)

    Google Scholar 

  93. Maor, E., Ivorra, A., Leor, J., Rubinsky, B.: The effect of irreversible electroporation on blood vessels. Technology in Cancer Research and Treatment 6, 307–312 (2007)

    Google Scholar 

  94. Maor, E., Ivorra, A., Leor, J., Rubinsky, B.: Irreversible electroporation attenuates neointimal formation after angioplasty. IEEE Trans. Biomed. Eng. 55, 2268–2274 (2008)

    Article  Google Scholar 

  95. Onik, G., Rubinsky, B., Mikus, P.: Irreversible Electroporation: Implications for Prostate Ablation. Technology in Cancer Research and Treatment 6, 295–300 (2007)

    Google Scholar 

  96. Rubinsky, J., Onik, G., Mikus, P., Rubinsky, B.: Optimal Parameters for the Destruction of Prostate Cancer Using Irreversible Electroporation. The Journal of Urology 180, 2668–2674 (2008)

    Article  Google Scholar 

  97. Al-Sakere, B., Bernat, C., Andre, F., Connault, E., Opolon, P., Davalos, R.V., Mir, L.M.: A study of the immunological response to tumor ablation with irreversible electroporation. Technology in Cancer Research and Treatment 6, 301–306 (2007)

    Google Scholar 

  98. Al-Sakere, B., André, F., Bernat, C., Connault, E., Opolon, P., Davalos, R.V., Rubinsky, B., Mir, L.M.: Tumor ablation with irreversible electroporation. PLoS ONE 2, e1135 (2007)

    Article  Google Scholar 

  99. Miklavcic, D., Beravs, K., Semrov, D., Cemazar, M., Demsar, F., Sersa, G.: The Importance of Electric Field Distribution for Effective in Vivo Electroporation of Tissues. Biophys. J. 74, 2152–2158 (1998)

    Article  Google Scholar 

  100. Lavee, J., Onik, G., Mikus, P., Rubinsky, B.: A Novel Nonthermal Energy Source for Surgical Epicardial Atrial Ablation: Irreversible Electroporation. The Heart Surgery Forum 10, E162–E167 (2007)

    Article  Google Scholar 

  101. Bertacchini, C., Margotti, P.M., Bergamini, E., Lodi, A., Ronchetti, M., Cadossi, R.: Design of an irreversible electroporation system for clinical use. Technology in Cancer Research and Treatment 6, 313–320 (2007)

    Google Scholar 

  102. Tekle, E., Wolfe, M.D., Oubrahim, H., Chock, P.B.: Phagocytic clearance of electric field induced ’apoptosis-mimetic’ cells. Biochemical and Biophysical Research Communications 376, 256–260 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ivorra, A., Rubinsky, B. (2010). Historical Review of Irreversible Electroporation in Medicine. In: Rubinsky, B. (eds) Irreversible Electroporation. Series in Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05420-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05420-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05419-8

  • Online ISBN: 978-3-642-05420-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics