Präsentation, Navigation und Interaktion

Chapter
Part of the eXamen.press book series (EXAMEN)

Zusammenfassung

Das vorausgegangene Kapitel hat eine Einführung in das Thema Informationsvisualisierung gegeben, die abstrakte Natur der zu Grunde liegenden Daten betont und typische Ziele, wie Exploration und Analyse, eingeführt. Im Fokus stand die Präsentation von Lösungen für Probleme, wie beispielsweise: Gibt es einen Zusammenhang zwischen den Attributen eines mehrdimensionalen Produktdatensatzes? Wie kann ich mir schnell einen Überblick über die hierarchische Organisation eines Unternehmens verschaffen?Wer sind die Freunde meiner Freunde in einem sozialen Online-Netzwerk, und welche Interessen haben sie? Dabei ging es vor allem darum, wie abstrakte Daten repräsentiert werden können. Je nach Aufgabe sowie Art und Dimensionalität der Daten müssen geeignete visuelle Kodierungen gefunden werden. Dabei kommen Raum und Zeit sowie Visualisierungsattribute, wie Farbe, Form, Orientierung oder Verbindung zum Einsatz

Literaturverzeichnis

  1. Bade, R., Cordes, J., Mewes, M., Preim, B. (2008). Interaction techniques for case selection in medical computer based training systems. In Mensch und Computer, S. 247–256. Oldenbourg Verlag.Google Scholar
  2. Tominski, C., Abello, J., Schumann, H. (2009). Technical section: Cgv–an interactive graph visualization system. Comput. Graph., 33 (6): 660–678.CrossRefGoogle Scholar
  3. Lorenz, H., Trapp, M., Jobst, M., Döllner, J. (2008). Interactive multi-perspective views of virtual 3d landscape and city models. In Proc. of the International Conference on GI Science (AGILE ’08), S. 301–321.Google Scholar
  4. Sarkar, M., Snibbe, S. S., Tversky, O. J., Reiss, S. P. (1993). Stretching the rubber sheet: A metaphor for viewing large layouts on small screens. In Proc. of the ACM Symposium on User interface Software and Technology (UIST’93), S. 81–91.Google Scholar
  5. Mackinlay, J. D., Robertson, G. G., Card, S. K. (1991). The perspective wall: Detail and context smoothly integrated. In Proc. of the ACM SIGCHI Conference on Human Factors in Computing Systems, S. 173–176.Google Scholar
  6. Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information visualizations. IEEE Symposium on Visual Languages, S. 336.Google Scholar
  7. Yi, J. S., Kang, Y., Stasko, J., Jacko, J. (2007). Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans. on Visualization and Computer Graphics, 13 (6): 1224–1231.CrossRefGoogle Scholar
  8. Furnas, G. W. (2006). A fisheye follow-up: Further reflections on focus + context. In Proc. of the ACM SIGCHI Conference on Human Factors in Computing Systems, S. 999–1008.Google Scholar
  9. Trapp, M., Glander, T., Buchholz, H., Döllner, J. (2008). 3d generalization lenses for interactive focus + context visualization of virtual city models. In Proc. of IEEE Information Visualization (IV ’08), S. 356–361.Google Scholar
  10. Keim, D. A. (2002). Information visualization and visual data mining. IEEE Trans. on Visualization and Computer Graphics, 8(1):1–8.MathSciNetCrossRefGoogle Scholar
  11. Chen, C. (2005). Top 10 unsolved information visualization problems. IEEE Comput. Graph. Appl., 25(4):12–16.CrossRefGoogle Scholar
  12. Matkovic, K., Freiler, W., Gracanin, D., Hauser, H. (2008). Comvis: A coordinated multiple views system for prototyping new visualization technology. Proc. of Information Visualisation (IV’08), S. 215–220.Google Scholar
  13. Gustafson, S., Baudisch, P., Gutwin, C., Irani, P. (2008). Wedge: Clutter–free visualization of off–screen locations. In Proc. of the ACM SIGCHI Conference on Human Factors in Computing Systems, S. 787–796.Google Scholar
  14. Robbins, D. C., Cutrell, E., Sarin, R., Horvitz, E. (2004). Zonezoom: Map navigation for smartphones with recursive view segmentation. In Proc. of Advanced visual interfaces (AVI ’04), S. 231–234.Google Scholar
  15. Karnick, P., Cline, D., Jeschke, S., Razdan, A., Wonka, P. (2010). Route visualization using detail lenses. IEEE Trans. on Visualization and Computer Graphics, 16(2):235–247.CrossRefGoogle Scholar
  16. Baldonado, W., Michelle Q., Woodruff, A., Kuchinsky, A. (2000). Guidelines for using multiple views in information visualization. In Proc. of Advanced Visual Interfaces (AVI ’00), S. 110–119.Google Scholar
  17. Spindler, M., Stellmach, S., Dachselt, R. (2009). Paperlens: Advanced magic lens interaction above the tabletop. In Proce. of the ACM Conference on Interactive Tabletops and Surfaces (ITS ’09:), S. 69–76.Google Scholar
  18. Spence, R. (2007). Information Visualization: Design for Interaction (2nd Edition). Prentice-Hall, Inc.Google Scholar
  19. Roberts, J. C. (2007). State of the art: Coordinated & multiple views in exploratory visualization. Proc. of Coordinated and Multiple Views in Exploratory Visualization (CMV’07), 0: 61–71.CrossRefGoogle Scholar
  20. Tufte, E. R. (1997). Visual Explanations: Images and Quantities, Evidence and Narrative. Graphics Press.Google Scholar
  21. Bederson, B. B. (2000). Fisheye menus. In Proc. of the ACM Symposium on User Interface Software and Technology (UIST’00), S. 217–225.Google Scholar
  22. Bederson, B. B., Clamage, A., Czerwinski, M. P., Robertson, G. G. (2004). Datelens: A fisheye calendar interface for pdas. ACM Trans. on Computer-Human Interaction, 11(1):90–119.CrossRefGoogle Scholar
  23. Lichtschlag, L., Karrer, T., Borchers, J. (2009). Fly: a tool to author planar presentations. In Proc. of the International Conference on Human factors in computing systems, S. 547–556.Google Scholar
  24. Diehl, S. (2007). Software Visualization – Visualizing the Structure, Behaviour, and Evolution of Software. Springer-Verlag Berlin Heidelberg.MATHGoogle Scholar
  25. Kosara, R., Miksch, S., Hauser, H. (2001). Semantic depth of field. In Proc. of the IEEE Symposium on Information Visualization (INFOVIS’01), S. 97.Google Scholar
  26. Ahlberg, C. (1996). Spotfire: An information exploration environment. SIGMOD Rec., 25(4):25–29.CrossRefGoogle Scholar
  27. Tufte, E. R. (1990). Envisioning Information. Graphics Press.Google Scholar
  28. Büring, T. (2007). Zoomable User Interfaces on Small Screens - Presentation & Interaction Design for Pen-Operated Mobile Devices. PhD Thesis, Universität Konstanz.Google Scholar
  29. Ware, C. (2004). Information Visualization - Perception for Design. 2. Auflage. Morgan Kaufmann.CrossRefGoogle Scholar
  30. Stone, M. C., Fishkin, K., Bier, E. A. (1994). The movable filter as a user interface tool. In Proc. of the ACM SIGCHI Conference on Human Factors in Computing Systems, S. 306–312.Google Scholar
  31. Furnas, G. W. (1986). Generalized fisheye views. Proc. of the ACM SIGCHI Conference on Human Factors in Computing Systems, 17(4):16–23.Google Scholar
  32. Norman, D. A. (2003). Emotional Design: Why We Love (or Hate) Everyday Things. Basic Books.Google Scholar
  33. Büring, T., Gerken, J., Reiterer, H. (2006). Usability of overview-supported zooming on small screens with regard to individual differences in spatial ability. In Proc. of Advanced Visual Interfaces (AVI ’06), S. 233–240.Google Scholar
  34. Bederson, B. B. (2001). Photomesa: a zoomable image browser using quantum treemaps and bubblemaps. In Proc. of the ACM symposium on User Interface Software and Technology (UIST’01), S. 71–80.Google Scholar
  35. Tominski, C. (2006). Event-Based Visualization for User-Centered Visual Analysis. PhD Thesis.Google Scholar
  36. Cockburn, A., Karlson, A., Bederson, B. B. (2008). A review of overview+detail, zooming, and focus+context interfaces. ACM Computing Surveys, 41(1):1–31.CrossRefGoogle Scholar
  37. Kreuseler, M., Lopez, N., Schumann, H. (2000). A scalable framework for information visualization. In Proc. of the IEEE Symposium on Information Visualization (INFOVIS ’00), S. 27.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Fakultät InformatikUniversität MagdeburgMagdeburgDeutschland

Personalised recommendations