Skip to main content

Die visuelle Kodierung von Informationen

  • Chapter
  • First Online:
Interaktive Systeme

Part of the book series: eXamen.press ((EXAMEN))

  • 12k Accesses

Zusammenfassung

Angesichts der weltweit zunehmenden Datenflut wird die Exploration und Analyse gigantischer Datenmengen zunehmend schwieriger [Keim, 2002]. Die Informationsräume werden nicht nur immer größer, sondern auch gleichzeitig komplexer und vernetzter. Zudem werden Informationen durch das Internet und zahlreiche weitere Informationskanäle einem immer breiteren Personenkreis zur Verfügung gestellt. Wie kann Menschen geholfen werden, diese Datenfülle zu überblicken, zu verstehen und Einsichten und Erkenntnisse darüber zu gewinnen? Das Forschungsgebiet der Informationsvisualisierung (InfoVis) versucht, darauf Antworten zu finden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  • Pousman, Z., Stasko, J. T., Mateas, M. (2007). Casual information visualization: Depictions of data in everyday life. IEEE Trans. on Visualization and Computer Graphics, 13(6): 1145–1152.

    Article  Google Scholar 

  • Levkowitz, H. (1991). Color icons: Merging color and texture perception for integrated visualization of multiple parameters. In Proc. of IEEE Visualization, S. 164–170.

    Google Scholar 

  • Holten, D. (2006). Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Trans. on Visualization and Computer Graphics, 12(5):741–748.

    Article  Google Scholar 

  • Freeman, W. T., Adelson, E. H., Pentland, A. P. (1990). Shape-from-shading analysis with shadelets and bumplets. Investigative Ophthalmology & Visual Science, 31.

    Google Scholar 

  • Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information visualizations. IEEE Symposium on Visual Languages, S. 336.

    Google Scholar 

  • Tufte, E. R. (2001). The Visual Display of Quantitative Information. Graphics Press, second edition.

    Google Scholar 

  • Keim, D. A. (2002). Information visualization and visual data mining. IEEE Trans. on Visualization and Computer Graphics, 8(1):1–8.

    Article  MathSciNet  Google Scholar 

  • Eick, S. G., Steffen, J. L., Sumner, Jr. E. E. (1992). Seesoft-a tool for visualizing line oriented software statistics. IEEE Trans. on Software Engineering, 18(11):957–968.

    Article  Google Scholar 

  • Shen, Z., Ma, K.-L., Eliassi-Rad, T. (2006). Visual analysis of large heterogeneous social networks by semantic and structural abstraction. IEEE Trans. on Visualization and Computer Graphics, 12(6): 1427–1439.

    Article  Google Scholar 

  • Herman, I., Melançcon, G., Marshall, M. S. (2000). Graph visualization and navigation in information visualization: A survey. IEEE Trans. on Visualization and Computer Graphics, 6(1):24–43.

    Article  Google Scholar 

  • Grivet, S., Auber, D., Domenger, J.-P., Melancon, G. (2006). Bubble tree drawing algorithm. 32:633–641.

    Google Scholar 

  • Chernoff, H. (1973). The use of faces to represent points in k-dimensional space graphically. Journal of the American Statistical Association, 68(342):361–368.

    Article  Google Scholar 

  • Spence, R. (2007). Information Visualization: Design for Interaction (2nd Edition). Prentice-Hall, Inc.

    Google Scholar 

  • Shneiderman, B. (1994). Dynamic queries for visual information seeking. IEEE Software, 11(6): 70–77.

    Article  Google Scholar 

  • Bertin, J. (1967). Sémiologie Graphique. Les diagrammes, les réseaux, les cartes. Editions de l’Ecole des Hautes Etudes en Sciences.

    Google Scholar 

  • Fua, Y.-H., Ward, M. O., Rundensteiner, E. A. (1999). Hierarchical parallel coordinates for exploration of large datasets. In Proc. of IEEE Visualization, S. 43–50.

    Google Scholar 

  • Cleveland, W. S. (1993). Visualizing Data. Hobart Press.

    Google Scholar 

  • Keim, D. A. (2000). Designing pixel-oriented visualization techniques: Theory and applications. IEEE Trans. on Visualization and Computer Graphics, 6(1):59–78.

    Article  Google Scholar 

  • Neumann, P., Schlechtweg, S., Carpendale, S. (2005). Arctrees: Visualizing relations in hierarchical data. In Proc. of the Eurographics / IEEE VGTC Symposium on Visualization (EuroVis’05), S. 53–60.

    Google Scholar 

  • Diehl, S. (2007). Software Visualization – Visualizing the Structure, Behaviour, and Evolution of Software. Springer-Verlag Berlin Heidelberg.

    MATH  Google Scholar 

  • Tufte, E. R. (1990). Envisioning Information. Graphics Press.

    Google Scholar 

  • Yang, J., Ward, M. O., Rundensteiner, E. A., Patro, A. (2003). Interring: a visual interface for navigating and manipulating hierarchies. Information Visualization, 2 (1): 16–30.

    Article  Google Scholar 

  • Card, S. K., Mackinlay, J. D., Shneiderman, B. (1999). Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann Publishers Inc.

    Google Scholar 

  • Coekin, J. A. (1969). A versatile presentation of parameters for rapid recognition of total state. In Proc. of International Symposium on Man-Machine Systems. IEEE.

    Google Scholar 

  • Ware, C. (2004). Information Visualization - Perception for Design. 2. Auflage. Morgan Kaufmann.

    Chapter  Google Scholar 

  • Mazza, R. (2009). Introduction to Information Visualization. Springer Publishing Company, Incorporated.

    Google Scholar 

  • Robertson, G. G., Mackinlay, J. D., Card, S. K. (1991). Cone trees: Animated 3d visualizations of hierarchical information. In Proc. of the ACM SIGCHI Conference on Human Factors in Computing Systems, S. 189–194.

    Google Scholar 

  • Shneiderman, B. (1992). Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans. on Graphics, 11(1): 92–99.

    Article  Google Scholar 

  • Ward, M., Grinstein, G., Keim, D. A. (2010). Interactive Data Visualization: Foundations, Techniques, and Application. A. K. Peters, Ltd.

    Google Scholar 

  • Cornelissen, B., Holten, D., Zaidman, A., Moonen, L., van Wijk, J. J., van Deursen, A. (2007). Understanding execution traces using massive sequence and circular bundle views. In Proc. of the IEEE Conference on Program Comprehension (ICPC’07), S. 49–58.

    Google Scholar 

  • de Nooy, W., Mrvar, A., Batagelj, V. (2005). Exploratory Social Network Analysis with Pajek (Structural Analysis in the Social Sciences). Cambridge University Press.

    Google Scholar 

  • Telea, A. C. (2007). Data Visualization: Principles and Practice. A.K. Peters, Ltd.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Preim .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Preim, B., Dachselt, R. (2010). Die visuelle Kodierung von Informationen. In: Interaktive Systeme. eXamen.press. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05402-0_11

Download citation

Publish with us

Policies and ethics