The past, present, and future importance of fire in tropical rainforests

Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

The tropics bring to mind picturesque beaches and idyllic visions of seemingly endless tropical rainforests. Often overlooked, however, is that the tropics are also comprised of vast areas of savanna, montane grasslands, dry deciduous and dry thorn forests, as well as mangroves, deserts, wetlands, and a multitude of other ecosystems; many of these ecosystems burn frequently. The tropics cover one-third (33.7%) of the planet’s land surface. They contain over 40% of the world’s forests, the vast majority of all species, and are home to over 35% of the human population (Cochrane, 2009a). Satellite detections of thermal anomalies also show that the tropics experience more fires per year than anywhere else on Earth (Figure 7.1). In this region, where fire dominates many landcover types, sit the world’s richest storehouse of biodiversity within what appear to be nearly fire-immune tropical rainforests.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achard, F., Eva, H. D., Stibig, H. J., Mayaux, P., Gallego, J., Richards, T., and Malingreau, J. P. (2002) Determination of deforestation rates of the world’s humid tropical forests. Science, 297, 999–1002.CrossRefGoogle Scholar
  2. Alencar, A., Nepstad, D. C., and Vera Diaz, M. D. C. (2006) Forest understory fire in the Brazilian Amazon in ENSO and no-ENSO years: Area burned and committed carbon emissions. Earth Interactions, 10, Art. No. 6.Google Scholar
  3. Alves, D. S., Pereira, J. L. G., De Sousa, C. L., Soares, J. V., and Yamaguchi, F. (1999) Characterizing landscape changes in central Rondonia using Landsat TM imagery. Int. J. Remote Sensing, 20, 2877–2882.CrossRefGoogle Scholar
  4. Asner, G. P., Knapp, D., Broadbent, E., Oliveira, P., Keller, M., and Silva, J. (2005) Selective logging in the Brazilian Amazon. Science, 310, 480–482.CrossRefGoogle Scholar
  5. Aubre´ ville, A. M. A. (1947) The disappearance of the tropical forests of Africa. Unasylva, 1, 5–11. Avissar, R. and Liu, Y. (1996) A three-dimensional numerical study of shallow convectiveGoogle Scholar
  6. clouds and precipitation induced by land-surface forcing. J. Geophys. Res., 101, 7499–7518. Avissar, R., Silva Dias, P., Silva Dias, M., and Nobre, C. (2002) The Large-scale Biosphere–Google Scholar
  7. Atmosphere Experiment in Amazonia (LBA): Insights and future research needs. J. Geophys. Res., 107, doi: 10.1029/2002JD002704.
  8. Baidya Roy, S. and Avissar, R. (2000) Scales of response of the convective boundary layer to land-surface heterogeneity. Geophys. Res. Lett., 27, 533–536.CrossRefGoogle Scholar
  9. Baidya Roy, S. and Avissar, R. (2002) Impact of land use/land cover change on regional hydrometeorology in the Amazon. J. Geophys. Res., 107, doi: 10.1029/2000JD00266.
  10. Baker, P. J. and Bunyavejchewin, S. (2009) Fire behavior and fire effects across the forest landscape mosaics of continental Southeast Asia. In: M. A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics, pp. 311–334. Springer/ Praxis, Heidelberg, Germany/Chichester, U.K.Google Scholar
  11. Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Higuchi, N., Killeen, T. J., Laurance, S. G. et al. (2004) Increasing biomass in Amazonian forest plots. Philosophical Trans. Royal Society London B, 359, 353–365.CrossRefGoogle Scholar
  12. Barber, C. V. and Schweithelm, J. (2000) Trial by Fire: Forest Fire and Forestry Policy in Indonesia’s Era of Crisis and Reform. World Resources Institute, Washington, D.C.Google Scholar
  13. Barlow, J. and Peres, C. A. (2004) Ecological responses to El Nin˜ o-induced surface fires in central Brazilian Amazonia: Management implications for flammable tropical forests. Philosophical Trans. Royal Society London B, 359, 367–380.CrossRefGoogle Scholar
  14. Barlow, J. and Peres, C. A. (2006) Effects of single and recurrent wildfires on fruit production and large vertebrate abundance in a central Amazonian forest. Biodiversity Conservation, 15, 985–1012. Sec. 7.7] 7.7 References 233Google Scholar
  15. Barlow, J. and Peres, C. A. (2008) Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Trans. Royal Society London B, 363, 1787–1794.CrossRefGoogle Scholar
  16. Barlow, J. and Silveira, J. M. (2009) The consequences of fire for the fauna of humid tropical forests. In: M. A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics, pp. 543–556. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.Google Scholar
  17. Barlow, J., Peres, C. A., Lagan, B., and Haugaasen, T. (2003) Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett., 6, 6–8.CrossRefGoogle Scholar
  18. Barreto, P., Amaral, P., Vidal, E., and Uhl, C. (1998) Costs and benefits of forest management for timber production in eastern Amazonia. Forest Ecology and Management, 108, 9–26.CrossRefGoogle Scholar
  19. Beerling, D. J. and Mayle, F. E. (2006) Contrasting effects of climate and CO2 on Amazonian ecosystems since the Last Glacial Maximum. Global Change Biology, 12, 1977–1984; doi: 10.1111/j.1365-2486.2006.01228.7.CrossRefGoogle Scholar
  20. Betts, R. A., Cox, P. A., Collins, M., Harris, P. P., Huntingford, C., and Jones, C. D. (2004) The role of ecosystem–atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology, 78, 157–175.CrossRefGoogle Scholar
  21. Bond, W. J. and van Wilgen, B. W. (1996) Fire and Plants. Chapman & Hall. London (263 pp.).Google Scholar
  22. Bond, W. J., Woodward, F. I., and Midgley, G. F. (2005) The global distribution of ecosystems in a world without fire. New Phytologist, 165, 525–537.CrossRefGoogle Scholar
  23. Bowman, D. M. J. S. (2000) Australian Rainforests: Islands of Green in a Land of Fire. Cambridge University Press, New York (345 pp.).Google Scholar
  24. Brncic, T. M., Willis, K. J., Harris, D. J., and Washington, R. (2007) Culture or climate? The relative influences of past processes on the composition of the lowland Congo rainforest. Philosophical Trans. Royal Society London B, 362, 229–242.Google Scholar
  25. Brncic, T. M., Willis, K. J., Harris, D. J., Telfer, M. W., and Bailey, R. M. (2009) Fire and climate change impacts on lowland forest composition in northern Congo during the last 2580 years from palaeoecological analyses of a seasonally flooded swamp. The Holocene, 19, 79–89.CrossRefGoogle Scholar
  26. Bucini, G. and Lambin, E. F. (2002) Fire impacts on vegetation in Central Africa: A remotesensing- based statistical analysis. Applied Geography, 22, 27–48.CrossRefGoogle Scholar
  27. Bush, M.B. and Silman, M. R. (2007) Amazonian exploitation revisited: Ecological assymetry and the policy pendulum. Frontiers in Ecology and the Environment, 5, 457–465. doi: 10.1890/070018.CrossRefGoogle Scholar
  28. Bush, M. B., Silman, M. R., McMichael, C., and Saatchi, S. (2008) Fire, climate change and biodiversity in Amazonia: A Late-Holocene perspective. Philosophical Trans. Royal Society London B, 363, 1795–1802.CrossRefGoogle Scholar
  29. Chokkalingam, U., Kurniawan, I., Suyanto, Permana, R. P., Buitenzorgy, M., and Susanto, R. H. (2009) Fire and land use effects on biodiversity and livelihoods in the southern Sumatran wetlands. In: M. A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics, pp. 355–385. Springer/Praxis, Heidelberg, Germany/ChichesterGoogle Scholar
  30. Clark, D. A., Piper, S. C., Keeling, C. D., and Clark, D. B. (2003) Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proceedings of the National Academy of Sciences U.S.A, 100, 5852– 5857.CrossRefGoogle Scholar
  31. Cochrane, M. A. (2001a) Synergistic interactions between habitat fragmentation and fire in evergreen tropical forests. Conserv. Biol., 15, 1515–1521.CrossRefGoogle Scholar
  32. Cochrane, M. A. (2001b) In the line of fire: Understanding the impacts of tropical forest fires. Environment, 43, 28–38.CrossRefGoogle Scholar
  33. Cochrane, M. A. (2003) Fire science for rainforests. Nature, 421, 913–919.CrossRefGoogle Scholar
  34. Cochrane, M. A. (2009a) Fire in the tropics. In: M. A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics, pp. 1–23. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.Google Scholar
  35. Cochrane, M. A. (2009b) Fire, landuse, landcover dynamics and climate change in the Brazilian Amazon. In: M. A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics, pp. 389–426. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.Google Scholar
  36. Cochrane, M. A. and Barber, C. P. (2009) Future fire regimes of the Amazon: Climate change and human land use. Global Change Biology, 15, 601–612.CrossRefGoogle Scholar
  37. Cochrane, M. A. and Laurance, W. F. (2002) Fire as a large-scale edge effect in Amazonian forests. J. Trop. Ecol., 18, 311–325.CrossRefGoogle Scholar
  38. Cochrane, M. A. and Laurance, W. F. (2008) Synergisms among fire, land use, and climate change in the Amazon. Ambio, 37, 522–527.CrossRefGoogle Scholar
  39. Cochrane, M. A. and Schulze, M. D. (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: Effects on forest structure, biomass, and species composition. Biotropica, 31, 2–16.Google Scholar
  40. Cochrane, M. A., Alencar, A., Schulze, M. D., Souza Jr., C. M., Nepstad, D. C., Lefebvre, P., and Davidson, E. (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, 284, 1832–1835.CrossRefGoogle Scholar
  41. Cochrane, M. A., Skole, D., Matricardi, E., Barber, C., and Chomentowski, W. (2004) Selective logging, forest fragmentation and fire disturbance: Implications of interaction and synergy. In: D. Zarin (Ed.), Working Forests in the Neotropics: Conservation through Sustainable Management?, pp. 310–324. Columbia University Press, New York.Google Scholar
  42. Collins, M. (2005) The CMIP modeling groups, El Nin˜ o or La Nin˜ a-like climate change? Climate Dynamics, 24, 89–104.CrossRefGoogle Scholar
  43. Cook, K. H. and Vizy, E. K. (2006) South American climate during the Last Glacial Maximum: Delayed onset of the South American monsoon. J. Geophys. Res., 111, D02110, doi: 10.1029/2005JD005980.CrossRefGoogle Scholar
  44. Covey, C., AchutaRao, K. M., Cubasch, U., Jones, P., Lambert, S. J., Mann, M. E., Phillips, T. J., and Taylor, K. E. (2003) An overview of results from the Coupled Model Intercomparison Project. Global and Planetary Change, 37, 103–133.CrossRefGoogle Scholar
  45. Cowling, S. A. and Shin, Y. (2006) Simulated ecosystem threshold responses to co-varying temperature, precipitation and atmospheric CO2 within a region of Amazonia. Global Ecology and Biogeography, 15, 553–566.CrossRefGoogle Scholar
  46. Cox, P. M. (2001) Description of the TRIFFID Dynamic Global Vegetation Model (Technical Note 24). Hadley Centre, Met Office, London (16 pp.).Google Scholar
  47. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J. (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187.CrossRefGoogle Scholar
  48. Cox, P. M., Betts, R. A., Collins, M., Harris, P. P., Huntingford, C., and Jones, C. D. (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 78, 137–156.CrossRefGoogle Scholar
  49. Cox, P. M., Harris, P., Huntingford, C., Betts, R. A., Collins, M., Jones, C. D., Jupp, T. E., Marengo, J. A., and Nobre, C. A. (2008) Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature, 453, 212–215.CrossRefGoogle Scholar
  50. Dickinson, R. and Kennedy, P. (1992) Impacts on regional climate of Amazon deforestation. Geophys. Res. Lett., 19, 1947–1950.CrossRefGoogle Scholar
  51. Eltahir, E. A. B. and Bras, R. L. (1996) Precipitation recycling. Rev. Geophysics, 34, 367–378.Google Scholar
  52. Freitas, S., Silva Dias, M., and Silva Dias, P. (2000) Modeling the convective transport of trace gases by deep and moist convection. Hybrid Methods in Engineering, 3, 317–330.Google Scholar
  53. Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I. et al. (2006) Climate carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 3337–3353.CrossRefGoogle Scholar
  54. Gandu, A. W., Cohen, J. C. P., and de Souza, J. R. S. (2004) Simulation of deforestation in eastern Amazonia using a high-resolution model. Theoretical and Applied Climatology, 78, 123–135.CrossRefGoogle Scholar
  55. Gascon, C., Williamson, G. B., and Fonseca, G. A. B. (2000) Receding edges and vanishing fragments. Science, 288, 1356–1358.CrossRefGoogle Scholar
  56. Gerwing, J. J. (2002) Degradation of forests through logging and fire in the eastern Brazilian Amazon. For. Ecol. Mgmt., 157, 131–141.CrossRefGoogle Scholar
  57. Goldammer, J. G. and Seibert, B. (1989) Natural rain-forest fires in Eastern Borneo during Pleistocene and Holocene. Naturwissenschaften, 76, 518–520.CrossRefGoogle Scholar
  58. Goldammer, J. G. and Seibert, B. (1990) The impact of droughts and forest fires on tropical lowland rain forest of East Kalimantan. In: J. G. Goldammer (Ed.), Fire in the Tropical Biota. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.CrossRefGoogle Scholar
  59. Hammond, D. S. and ter Steege, H. (1998) Propensity for fire in Guianan rainforests. Conserv. Biol., 12, 944–947.Google Scholar
  60. Hansen, M. C., Stehman, S. V., and Potapov, P. V. (2010) Quantification of global gross forest cover loss. Proceedings of the National Academy of Sciences U.S.A, 107, 8650–8655.CrossRefGoogle Scholar
  61. Hasler, N. and Avissar, R. (2007) What controls evapotranspiration in the Amazon Basin? J. Hydrometeorology, 8, 380–395.CrossRefGoogle Scholar
  62. Holdsworth, A. R. and Uhl, C. (1997) Fire in Amazonian selectively logged rain forest and the potential for fire reduction. Ecol. Appls., 7, 713–725.CrossRefGoogle Scholar
  63. Huntingford, C., Harris, P. P., Gedney, N., Cox, P. M., Betts, R. A., Marengo, J. A., and Gash, J. H. C. (2004) Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Theoretical and Applied Climatology, 78, 177–185.CrossRefGoogle Scholar
  64. Ichii, K., Hashimoto, H., White, M. A., Potter, C., Hutrya, L. R., Huete, A. R., Myneni, R. B., and Nemani, R. R. (2007) Constraining rooting depths in tropical rainforests using satellite data and ecosystem modeling for accurate simulation of gross primary production seasonality. Global Change Biology, 13, 67–77.CrossRefGoogle Scholar
  65. IPCC (2007) Climate Change 2007: The Physical Science Basis (edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. Miller). Cambridge University Press, U.K. (1009 pp.).Google Scholar
  66. Jackson, S. M., Fredericksen, T. S., and Malcolm, J. R. (2002) Area disturbed and residual stand damage following logging in a Bolivian tropical forest. For. Ecol. Mgmt., 166, 271–283.CrossRefGoogle Scholar
  67. Jipp, P., Nepstad, D., Cassel, K., and de Carvalho, C. (1998) Deep soil moisture storage and transpiration in forests and pastures of seasonally dry Amazoˆ nia. Clim. Change, 39, 395–412.CrossRefGoogle Scholar
  68. Johnson, L. A. and Dearden, P. (2009) Fire, seasonal evergreen forests, conservation and mainland Southeast Asia. In: M. A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics, pp. 290–310. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.Google Scholar
  69. Jordan, C. F. (1982) The nutrient balance of an Amazonian rain forest. Ecology, 63, 647–654.Google Scholar
  70. Kauffman, J. B. (1991) Survival by sprouting following fire in tropical forests of the eastern Amazon. Biotropica, 23, 219–224.CrossRefGoogle Scholar
  71. Kauffman, J. B. and Uhl, C. (1990) Interactions of anthropogenic activities, fire, and logging in rain forests in the Amazon Basin. In: J. G. Goldammer (Ed.), Fire in the Tropical Biota, pp. 117–134. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  72. Kershaw, A. P., van der Kaars, S., and Flenley, J. R. (2007) The Quaternary history of Far Eastern rainforests. In: M. B. Bush and J. R. Flenley (Eds.), Tropical Rainforest Responses to Climate Change. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.Google Scholar
  73. Kinnaird, M. F. and O’Brien, T. G. (1998) Ecological effects of wildfire on lowland rainforest in Sumatra. Conservation Biology, 12, 954–956.Google Scholar
  74. Kleidon, A. and Lorenz, S. (2001) Deep roots sustain Amazonian rainforest in climate model simulations of the last ice age. Geophys. Res. Lett., 28, 2425–2428.CrossRefGoogle Scholar
  75. Kodandapani, N., Cochrane, M. A., and Sukumar, R. (2009) Forest fire regimes and their ecological effects in seasonally dry tropical ecosystems in the Western Ghats, India. In: M. A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics, pp. 335–354. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.Google Scholar
  76. Korner, C. (2000) Biosphere responses to CO2 enrichment. Ecological Applications, 10, 1590–1619.Google Scholar
  77. Kunii, O. (1999) Basic facts determining downwind exposures and their associated health effects, assessment of health effects in practice: A case study in the 1997 forest fires in Indonesia. In: K. Goh, D. Schwela, J. G. Goldammer, and O. Simpson (Eds.), Health Guidelines for Vegetation Fire Events: Background Papers, pp. 299–316. World Health Organization, Geneva, Switzerland.Google Scholar
  78. Laporte, N. T, Stabach, J. A., Grosch, R., Lin, T. S., and Goetz, S. J. (2007) Expansion of industrial logging in Central Africa. Science, 316, 1451.CrossRefGoogle Scholar
  79. Laurance, W. F., Laurance, S. G., Ferreira, L.V., Rankin-de Merona, J., Gascon, C., and Lovejoy, T. E. (1997) Biomass collapse in Amazonian forest fragments. Science, 278, 1117–1118.CrossRefGoogle Scholar
  80. Laurance, W. F., Cochrane, M. A., Bergen, S., Fearnside, P., Delamonica, P., Barber, C., D’Angelo, S., and Fernandes, T. (2001) The future of the Brazilian Amazon. Science, 291, 438–439.CrossRefGoogle Scholar
  81. Lean, J. and Rowntree, P. (1993) AGCMsimulation of the impact of Amazonian deforestation on climate using an improved canopy representation. Quart. J. Roy. Meteorol. Soc., 119, 509–530.CrossRefGoogle Scholar
  82. Levi, P. E., Cannell, M. G. R., and Friend, A. D. (2004) Modeling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Global Environmental Change, 14, 21–30.CrossRefGoogle Scholar
  83. Li, W. and Fu, R. (2004) Transition of the large-scale atmospheric and land surface conditions from dry to wet season over Amazonia as diagnosed by the ECMWF re-analysis. J. Climate, 17, 2637–2651.CrossRefGoogle Scholar
  84. Li, W., Fu, R., and Dickinson, R. E. (2006) Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4. J. Geophys. Res., 111, D02111, doi: 10.1029/2005JD006355.CrossRefGoogle Scholar
  85. Lloyd, J. and Farquhar, G. (2007) Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philosophical Trans. Royal Society London B, 363, 1811–1817.Google Scholar
  86. Malhi, Y. and Wright, J. (2004) Spatial patterns and recent trends in the climate of tropical rainforest regions. Philosophical Trans. Royal Society London B, 359, 311–329.CrossRefGoogle Scholar
  87. Marengo, J. A., Nobre, C. A. Tomasella, J., Cardoso, M. F., and Oyama, M. D. (2008a) Hydroclimatic and ecological behaviour of the drought of Amazonia in 2005. Philosophical Trans. Royal Society London B, 363, 1773–1778.Google Scholar
  88. Marengo, J. A., Nobre, C. A., and Tomasella, J. (2008b) The drought of Amazonia in 2005. J. Climate, 21, 495–515.CrossRefGoogle Scholar
  89. Matricardi, E., Skole, D., Cochrane, M., Qi, J., Pedlowski, M., and Chomentowski, W. (2007) Multi-temporal assessment of selective logging in the Brazilian Amazon using Landsat data. Int. J. Remote Sensing, 28, 63–82.CrossRefGoogle Scholar
  90. Messina, J. P. and Cochrane, M. A. (2007) The forests are bleeding: How land use change is creating a new fire regime in the Ecuadorian Amazon. J. Latin American Geography, 6, 85– 100.CrossRefGoogle Scholar
  91. Moreira, M. Z., Sternberg, L. D. L., Martinelli, L. A., Victoria, R. L., Barbosa, E. M., Bonates, L. C. M., and Nepstad, D. C. (1997) Contribution of transpiration to forest ambient vapour based on isotopic measurements. Global Change Biology, 3, 439–450.CrossRefGoogle Scholar
  92. Mueller-Dombois, M. (1981) Fire in tropical ecosystems. Proceedings of the Fire Regimes and Ecosystem Properties Conference (GTR WO-26, pp. 137–176).Google Scholar
  93. Nascimento, H. E. M., and Laurance, W. F. (2002) Total aboveground biomass in central Amazonian rainforests: A landscape-scale study. For. Ecol. Mgmt., 168, 311–321.CrossRefGoogle Scholar
  94. Nepstad, D. C., Carvalho, C., Davidson, E., Jipp, P., Lefebre, P., Negreiros, G., Silva, E., Stone, T., Trumbore, S., and Vieira, S. (1994) The role of deep roots in the hydrological cycles of Amazonian forests and pastures. Nature, 372, 666–669.CrossRefGoogle Scholar
  95. Nepstad, D. C., Verı´ssimo, A., Alencar, A., Nobre, C., Lima, E., Lefebvre, P., Schlesinger, P., Potter, C., Moutinho, P., Mendoza, E. et al. (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature, 398, 505–508.CrossRefGoogle Scholar
  96. Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P., and Cardinot, G. (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology, 88, 2259–2269.CrossRefGoogle Scholar
  97. Nobre, C. A., Sellers, P., and Shukla, J. (1991) Amazonian deforestation and regional climate change. J. Climate, 4, 411–413.CrossRefGoogle Scholar
  98. Page, S. E., Siegert, F., Rieley, J. O., Boehm, H-D. V., Adi, J., and Limin, S. (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420, 61–65.CrossRefGoogle Scholar
  99. Page, S., Hoscilo, A., Langer, A., Tansey, K., Siegert, F., Limin, S., and Rieley, J. (2009) Tropical peatland fires in Southeast Asia. In: M. A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics, pp. 263–287. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.Google Scholar
  100. Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Nunez, P. V., Vasquez, R. M., Laurance, S. G., Ferreira, L. V., Stern, M., Brown, S. et al. (1998) Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science, 282, 439–442.CrossRefGoogle Scholar
  101. Pinard, M. A. and Huffman, J. (1997) Fire resistance and bark properties of trees in a seasonally dry forest in eastern Bolivia. J. Tropical Ecology, 13, 727–740.CrossRefGoogle Scholar
  102. Pyne, S. J. (1997) World Fire: The Culture of Fire on Earth. University of Washington Press, Seattle, WA (384 pp.).Google Scholar
  103. Quintere, J. G. (1993) Canadian mass fire experiment, 1989. J. Fire Protection Engineering, 5, 67–78.CrossRefGoogle Scholar
  104. Raich, J. W., Russell, A. E., Kitayama, K., Parton, W. J., and Vitousek, P. M. (2006) Temperature influences on carbon accumulation in moist tropical forests. Ecology, 87, 76–87.CrossRefGoogle Scholar
  105. Rosenfeld, D. (1999)TRMMobserved first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 3105–3108.Google Scholar
  106. Salati, E. and Vose, P. B. (1984) Amazon basin: A system in equilibrium. Science, 225, 129–138.Google Scholar
  107. Salazar, L. F., Nobre, C. A., and Oyama, M. D. (2007) Climate change consequences on the biome distribution in tropical South America. Geophys. Res. Lett., 34, L09708, doi: 10.1029/2007/GL029695.CrossRefGoogle Scholar
  108. Sanford, R. L., Saldarriaga, J., Clark, K., Uhl, C., and Herrera, R. (1985) Amazon rainforest fires. Science, 227, 53–55.CrossRefGoogle Scholar
  109. Siegert, F. and Ruecker, G. (2000) Use of multitemporal ERS-2 SAR images for identification of burned scars in South East Asian tropical rainforest. Int. J. Remote Sensing, 21, 831–837.CrossRefGoogle Scholar
  110. Siegert, F., Ruecker, G., Hinrichs, A., and Hoffman, A. A. (2001) Increased damage from fires in logged forests during droughts caused by El Nin˜ o. Nature, 414, 437–440.CrossRefGoogle Scholar
  111. Silva Dias, P. L. and Regnier, P. (1996) Simulation of mesoscale circulations in a deforested area of Rondoˆ nia in the dry season. In: J. Gash, C. Nobre, J. Roberts, and R. Victoria (Eds), Amazonian Deforestation and Climate, pp. 531–547. John Wiley & Sons, San Francisco. Sist, P. and Nguyen-The´, N. (2002) Logging damage and the subsequent dynamics of aGoogle Scholar
  112. Sist, P. and Nguyen-The´, N. (2002) Logging damage and the subsequent dynamics of a dipterocarp forest in East Kalimantan. For. Ecol. Mgmt., 165, 85–103.Google Scholar
  113. Souza, C. and Barreto, P. (2000) An alternative approach for detecting and monitoring selectively logged forests in the Amazon. Int. J. Remote Sensing, 21, 173–179.CrossRefGoogle Scholar
  114. Stott, P. (2000) Combustion in tropical biomass fires: A critical review. Progress in Physical Geography, 24, 355–377.Google Scholar
  115. Sud, Y., Yang, R., and Walker, G. (1996) Impact of in situ deforestation in Amazonia on the regional climate: General circulation model simulation study. J. Geophys. Res., 101, 7095–7109.CrossRefGoogle Scholar
  116. Swaine, M. D. (1992) Characteristics of dry forest in West Africa and the influence of fire. J. Veg. Science, 3, 365–374.CrossRefGoogle Scholar
  117. Tacconi, L. (2003) Fires in Indonesia: Causes, Costs and Policy Implications (CIFOR Occasional Paper No. 38). CIFOR (Center for International Forestry Research), Bogor, Indonesia. 24 pp.Google Scholar
  118. Tate, G. H. H. (1932) Life zones at Mount Roraima. Ecology, 13, 235–257.Google Scholar
  119. Toniolo, A. and Uhl, C. (1995) Economic and ecological perspectives on agriculture in the eastern Amazon. World Development, 23, 959–973.CrossRefGoogle Scholar
  120. Tutin, C. E. G., White, L. J. T., and Mackangamissandzou, A. (1996) Lightning strike burns large forest tree in the Lope´ Reserve, Gabon. Global Ecology and Biogeography Letters, 5, 36–41.CrossRefGoogle Scholar
  121. Uhl, C. and Buschbacher, R. (1985) A disturbing synergism between cattle ranch burning practices and selective tree harvesting in the eastern Amazon. Biotropica, 17, 265–268.CrossRefGoogle Scholar
  122. Uhl, C. and Kauffman, J. B. (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology, 71, 437–449.CrossRefGoogle Scholar
  123. Uhl, C., Kauffman, J. B., and Cummings, D. L. (1988) Fire in the Venezuelan Amazon, 2: Environmental conditions necessary for forest fires in the evergreen rainforest of Venezuela. Oikos, 53, 176–184.CrossRefGoogle Scholar
  124. Uhl, C., Barreto, P., Verı´ssimo, A., Vidal, E., Amaral, P., Barros, A. C., Souza, C., Johns, J., and Gerwing, J. (1997) Natural resource management in the Brazilian Amazon. Bioscience, 47, 160–168.CrossRefGoogle Scholar
  125. UNEP (2002) Spreading Like Wildfire: Tropical Forest Fires in Latin America and the Caribbean: Prevention, Assessment and Early Warning (edited by M. A. Cochrane). United Nations Environment Program, Mexico City, Mexico. Available at http://www.rolac.unep.mx/dewalac/eng/fire_ingles.pdf
  126. Van Nieuwstadt, M. G. L., Sheil, D., and Kartawinata, K. (2001) The ecological consequences of logging in the burned forests of East Kalimantan, Indonesia. Conserv. Biol., 15, 1183–1186.Google Scholar
  127. Vayda, A. P. (1999) Finding Causes of the 1997–1998 Indonesian Forest Fires: Problems and Possibilities. World Wide Fund for Nature (WWF), Jakarta, Indonesia.Google Scholar
  128. Verı´ssimo, A., Barreto, P., Tarifa, R., and Uhl, C. (1995) Extraction of a high-value natural source from the Amazon: The case of mahogany. For. Ecol. Mgmt., 72, 39–60.CrossRefGoogle Scholar
  129. Verı´ssimo, A., Cochrane, M. A., Souza Jr., C., and Salomo, R. (2002) Priority areas for establishing national forests in the Brazilian Amazon. Conservation Ecology, 6, 4. Available at http://www.consecol.org/vol6/iss1/art4
  130. Walker, G., Sud, Y., and Atlas, R. (1995) Impact of ongoing Amazonian deforestation on local precipitation: A GCM simulation study. Bull. Amer. Meteorol. Society, 76, 346–361.CrossRefGoogle Scholar
  131. Woods, P. (1989) Effects of logging, drought, and fire on structure and composition of tropical forests in Sabah, Malaysia. Biotropica, 21, 290–298.CrossRefGoogle Scholar
  132. Wrangham, R. (2009) Catching Fire. Basic Books. New York (309 pp.).Google Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Geographic Information Systems Center of ExcellenceSouth Dakota State UniversityBrookingsUSA

Personalised recommendations