Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests

  • R. J. MorleyEmail author
Part of the Springer Praxis Books book series (PRAXIS)


The history of megathermal (currently ‘‘tropical’’) rainforests over the last 30 kyr is now becoming relatively well-understood, as demonstrated by the many contributions in this volume. However, our perception of their longer-term history remains highly fragmentary. There is a real need for a better understanding of rainforest history on an evolutionary time scale, not only to have a better idea of the biological, geological, and climatic factors which have led to the development of the most diverse ecosystem ever to have developed on planet Earth, but also since the implications of rainforest history on an evolutionary time scale are inextricably linked to a plethora of other issues currently receiving wide attention. Determining the place and time of origin and/or radiation of angiosperms (which overwhelmingly dominate present day megathermal rainforests), establishing patterns of global climate change, clarifying the nature of global temperature gradients through time, understanding the successive switching from greenhouse to icehouse climates, global warming, patterns of dispersal of megathermal plants and animals, higher rank (ordinal) taxonomy and the nature of controls on global diversity gradients are but some issues which are being clarified with the better understanding of the long-term history of megathermal rainforests.


Middle Miocene Grass Pollen Middle Eocene Niger Delta Late Eocene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abreu, V. S. and Anderson, J. B. (1998) Glacial eustacy during the Cenozoic: Sequence stratigraphic implications. AAPG Bulletin, 82, 1385–1400.Google Scholar
  2. Anderson, J. A. R. and Muller, J. (1975) Palynological study of a Holocene peat and a Miocene coal deposit from N.W. Borneo. Review of Palaeobotany and Palynology, 19, 291–351.Google Scholar
  3. Ashton, P., Givnish, T., and Appanah, S. (1988) Staggered flowering in the Dipterocarpaceae: New insights into floral induction and the evolution of mast fruiting in the aseasonal tropics. American Naturalist, 132, 44–66.CrossRefGoogle Scholar
  4. Awasthi, N. (1992) Changing patterns of vegetation succession through Siwalik succession. Palaeobotanist, 40, 312–327.Google Scholar
  5. Awasthi, N. and Mehrota, R. C. (1995) Oligocene flora from Makum Coalfield, Assam, India. Palaeobotanist, 44, 157–188.Google Scholar
  6. Barron, E. J. and Washington, W. M. (1985) Warm Cretaceous climates: High atmospheric CO2 as a plausible mechanism. In: Sundquist et al. (Eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations, Archaean to the Present (pp. 546–553). American Geophysical Union, Washington, D.C.Google Scholar
  7. Bartek, L. R., Vail, P. R., Anderson, J. B., Emmet, P. A., and Wu, S. (1991) Effect of Cenozoic ice sheet fluctuations in Antarctica on the stratigraphic signature of the Neogene. J. Geophys. Res.,, 96, 6753–6778.CrossRefGoogle Scholar
  8. Bennett, K. D. (2004) Continuing the debate on the role of Quaternary environmental change on macroevolution. Philosophical Trans. Royal Society London B, 359, 295–303.CrossRefGoogle Scholar
  9. Berggren, W. A., Kent, V. D., Swisher III, C. C., and Aubrey, M.-P. (1995) A revised Cenozoic geochronology and chronostratigraphy. In: Time Scales and Global Stratigraphic Correlation (SEPM Special Publication 54, pp. 129–212). Society of Economic Palaeontologists and Mineralogists, Tulsa, OK.Google Scholar
  10. Bermingham, E. and Dick, C. (2001) The Inga, newcomer or museum antiquity. Science, 293, 2214–2216.CrossRefGoogle Scholar
  11. Birks, H. J. B. and Line, J. M. (1990) The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. The Holocene, 2, 1–10.Google Scholar
  12. Boltovskoy, D. (1988) The range-through method and first–last appearance data in palaeontological surveys. J. Palaeontology, 62, 157–159.Google Scholar
  13. Boucot, A. J., Chen Xu, and Scotese, C. R. with contributions by Morley, R. J. (in press). Preliminary Compilation of Cambrian through Miocene Climatically Sensitive Deposits (SEPM Special Publication Series). Society of Economic Paleontologists and Mineralogists, Tulsa, OK.Google Scholar
  14. Boyce, C. K. and Jung-Eun Lee, (2010) An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity. Proceedings of the Royal Society B, 485, 1–7Google Scholar
  15. Brodribb, T. J. and Field, T. J. (2009) Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecology Letters, 10,1–9.Google Scholar
  16. Burnham, R. J. and Graham, A. (1999) The history of Neotropical vegetation: New developmentsand status. Annals of the Missouri Botanic Garden, 86, 546–589.CrossRefGoogle Scholar
  17. Bush, M. B. (2002) On the interpretation of fossil Poaceae pollen in the lowland humid neotropics. Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 5–17.CrossRefGoogle Scholar
  18. Chandler, M. E. J. (1964) The Lower Tertiary Floras of Southern England: A Summary and Survey of Findings in the Light of Recent Botanical Observations (151 pp.). British Museum, London.Google Scholar
  19. Chesters, K. I. M. (1955) Some plant remains from the Upper Cretaceous and Tertiary of West Africa. Annals and Magazine of Natural History, 12, 498–504.Google Scholar
  20. Christophel, D. C. (1994) The Early Tertiary macrofloras of continental Australia. In: R. S. Hill (Ed.), History of Australian Vegetation, Cretaceous to Recent (pp. 262–275). Cambridge University Press, Cambridge, U.K.Google Scholar
  21. Coetzee, J. A. (1978) Climatic and biological changes in southwestern Africa during the late Cainozoic. Palaeoecology of Africa, 10, 13–29.Google Scholar
  22. Colinvaux, P. A., De Oliviera, P. E., and Bush, M. B. (2000) Amazonian and Neotropical plant communities on glacial time-scales: The failure of the aridity and refuge hypotheses. Quaternary Science Reviews, 19, 141–169.CrossRefGoogle Scholar
  23. Collinson, M. E. (1983) Fossil Plants of the London Clay (Palaeontological Association Field Guides to Fossils No 1, 121 pp.). Palaeontological Association, London.Google Scholar
  24. Collinson, M. E. (1988) The special significance of the Middle Eocene fruit and seed flora from Messel, Western Germany. Courier Forschunginst. Senkenberg, 107, 187–197.Google Scholar
  25. Crane, P. R. (1987) Vegetational consequences of the angiosperm diversification. In: E. M. Friis, W. G. Chaloner, and P. R. Crane (Eds.), The Origins of Angiosperms and Their Biological Consequences (pp. 107–144). Cambridge University Press, Cambridge, U.K.Google Scholar
  26. Crane, P. R. and Lidgard, S. (1990) Angiosperm radiation and patterns of Cretaceous palynological diversity. In: P. D. Taylor and G. P. Larwood (Eds.), Major Evolutionary Radiations (Systematics Association Special Volume 42, pp. 377–407). Systematics Association, London.Google Scholar
  27. Crane, P. R., Friis, E. M., and Pedersen, K. R. (1995) The origin and early diversification of angiosperms. Nature, 374, 27–34.CrossRefGoogle Scholar
  28. Curran, L. M., Trigg, S., McDonald, A. K., Astiani, D., Hardiono, Y. M., Siregar, P., Caniago, I., and Kasischke, E. (2004) Forest loss in protected areas of Indonesian Borneo. Science, 303, 1000–1003.CrossRefGoogle Scholar
  29. Daley, B. (1972) Some problems concerning the Early Tertiary climate of southern Britain. Palaeogeography, Palaeoclimatology, Palaeoecology, 11, 177–190.CrossRefGoogle Scholar
  30. Davis, C. C., Bell, C. D., Matthews, S., and Donaghue M. J. (2002) Laurasian migration explains Gondwanan disjunctions: Evidence from Malpighiaceae. Proceedings of the National Academy of Sciences U.S.A., 99, 6933–6937.Google Scholar
  31. Davis, C. C., Webb, C. O., Wurdack, K. J., Jaramillo, C. A., and Donaghue, M. J. (2005) Explosive radiation of Malpighiales supports a Mid Cretaceous origin of modern tropical rain forests. The American Naturalist, 165, E36–E65.CrossRefGoogle Scholar
  32. Dettmann. M. E. (1994) Cretaceous vegetation: The microfossil record. In: R. S. Hill (Ed.), History of Australian Vegetation: Cretaceous to Recent (pp. 143–170). Cambridge University Press, Cambridge, U.K.Google Scholar
  33. Dick, C. W., Abdul-Salim, K., and Bermingham, E. (2003) Molecular systematics reveals cryptic Tertiary diversification of a widespread tropical rainforest tree. American Naturalist, 160, 691–703.Google Scholar
  34. Doyle, J. A. and Donaghue, M. J. (1987) The origin of angiosperms: A cladistic approach. In: E. M. Friis, W. G. Chaloner, and P. R. Crane (Eds.), Introduction to Angiosperms: The Origins of Angiosperms and Their Biological Consequences (pp. 17–49). Cambridge University Press, Cambridge, U.K.Google Scholar
  35. Doyle, J. A. and Endress, P. K. (1997) Morphological phylogenetic analysis of basal angiosperms: Comparison and combination with molecular data. Int. J. Plant Science, 161, S121–S153.CrossRefGoogle Scholar
  36. Doyle, J. A. and Le Thomas, A. (1997) Phylogeny and geographic history of Annonaceae. Geographie Physique et Quaternaire, 51, 353–351.Google Scholar
  37. Duperon-Laudoueneix, M. (1991) Importance of fossil woods (conifers and angiosperms) discovered in continental Mesozoic sediments of northern equatorial Africa. J. African Earth Sciences, 12, 391–396.CrossRefGoogle Scholar
  38. Dupont, L. M. and Wienelt, M. (1996) Vegetation history of the savanna corridor between the Guinean and the Congolian rain forest during the last 150,000 years. Veget. Hist.Archaeobot., 5, 273–292. Flenley, J. R. (1979) The Equatorial Rain Forest: A Geological History (162 pp.). Butterworths, London.Google Scholar
  39. Flenley, J. R. (2005) Palynological richness and the tropical rain forest. In: E. Bermingham, C. Dick, and C. Moritz (Eds.), Tropical Rainforests: Past, Present, and Future (pp. 73–77). Chicago University Press, Chicago.Google Scholar
  40. Frederiksen, N. O. (1994) Paleocene floral diversities and turnover events in eastern North America and their relation to diversity models. Review of Palaeobotany and Palynology, 82, 225–238.CrossRefGoogle Scholar
  41. Germeraad, J. H., Hopping, C. A., and Muller, J. (1968) Palynology of Tertiary sediments from tropical areas. Review of Palaeobotany and Palynology, 6, 189–348.CrossRefGoogle Scholar
  42. Givnish, T. J., Evans, T. M., Zihra, M. L., Patterson, T. B., Berry, P. E., and Systma, K.J. (2000) Molecular evolution, adaptive radiation, and geographic diversification in the amphi- Atlantic family Rapataceae: Evidence from ndhF sequences and morphology. Evolution, 54, 1915–1937.Google Scholar
  43. Greenwood, D. R., (1994) Palaeobotanical evidence for Tertiary climates. In: R. S. Hill (Ed.), History of Australian Vegetation: Cretaceous to Recent (pp. 44–59). Cambridge University Press, Cambridge, U.K.Google Scholar
  44. Grime, J. B. (1979) Plant Strategies and Vegetation Process. John Wiley & Sons, Chichester, U.K.Google Scholar
  45. Haberle, S. (1997) Upper Quaternary vegetation and climate history of the Amazon Basin: Correlating marine and terrestrial records. Proceedings of the Ocean Drilling Program, Scientific Results, 155, 381–396.Google Scholar
  46. Haberle, S. G and Malin, M. (1998) Late Quaternary vegetation and climate change in the Amazon Basin based on a 50000-year pollen record from the Amazon Fan, ODP Site 932. Quaternary Research, 51, 27–38.CrossRefGoogle Scholar
  47. Haffer, J. (1969) Speciation in Amazonian birds. Science, 165, 131–137.CrossRefGoogle Scholar
  48. Hall, R. (1996) Reconstructing Cenozoic SE Asia. In: R. Hall and D. J. Blundell (Eds.), Tectonic Evolution of Southeast Asia (Geological Society Special Publication 106, pp. 152–184). Geological Society, London.Google Scholar
  49. Hall, R. (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sciences, 20, 353–431.CrossRefGoogle Scholar
  50. Hallam, A. (1992) Phanerozoic Sea Level Changes (265 pp.). Colombia University Press, New York.Google Scholar
  51. Hallam, A. (1994) An Outline of Phanerozoic Biogeography (246 pp.). Oxford University Press, New York.Google Scholar
  52. Herngreen, G. F. W. and Duenas-Jimenez, H. (1990) Dating of the Cretaceous Une Formation, Colombia, and the relationship with the Albian–Cenomanian African–South American microfloral province. Review of Palaeobotany and Palynology, 66, 345–359.CrossRefGoogle Scholar
  53. Herngreen, G. F. W., Kedves, M., Rovnina, L. V., and Smirnova, S. B. (1996) Cretaceous palynological provinces: A review. In: J. Jansonius and D. C. McGregor (Eds.), Palynology: Principles and Applications (Vol. 3, pp. 1157–1188). American Association of Stratigraphic Palynologists Foundation, Houston, TX.Google Scholar
  54. Hickey, L. J. and Doyle, J. A. (1977) Early Cretaceous fossil evidence for angiosperm evolution. The Botanical Review, 43, 1–183.CrossRefGoogle Scholar
  55. Hooghiemstra, H. (1984) Vegetational and Climatic History of the High Plain of Bogota´, Colombia: A Continuous Record of the Last 3.5 Million Years (Dissertationes Botanicae 79, 368 pp.). J. Cramer, Vaduz, Germany.Google Scholar
  56. Hooghiemstra, H. and Ran, E. T. H. (1994) Late Pliocene–Pleistocene high resolution pollen sequence of Colombia: An overview of climatic change. Quaternary International, 21, 63–80.CrossRefGoogle Scholar
  57. Hooghiemstra, H. and Van der Hammen, T. (1998) Neogene and Quaternary development of the Neotropical rain forest. Earth Science Reviews 44, 147–183.CrossRefGoogle Scholar
  58. Hoorn, C. (1994) An environmental reconstruction of the palaeo-Amazon River system (Middle–Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112, 187–238.CrossRefGoogle Scholar
  59. Hoorn, C. (1997) Palynology of the Pleistocene glacial/interglacial cycles of the Amazon Fan (holes 940A, 944A and 946A). Proceedings of the Ocean Drilling Program, Initial Results, 155, 397–407.Google Scholar
  60. Hoorn, C. (2000) Palynological evidence for vegetation development and climatic change in the Sub-Himalayan Zone (Neogene, Central Nepal). Palaeogeography, Palaeoclimatology, Palaeoecology, 163, 133–161.CrossRefGoogle Scholar
  61. Hudson, J. D. and Anderson, T. F. (1989) Ocean temperatures and isotopic compositions through time. Transactions Royal Society of Edinburgh, Earth Sciences, 80, 183–192.CrossRefGoogle Scholar
  62. Jacobs, B. F. (1999) Estimation of rainfall variables from leaf characters in tropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 145, 231–250.CrossRefGoogle Scholar
  63. Jacobs, B. F. (2002) Estimation of low-latitude climates using fossil angiosperm leaves: Examples from the Miocene Tugen Hills, Kenya. Palaeobiology, 28, 399–421.CrossRefGoogle Scholar
  64. Jacobs, B. F. and Heerenden, P. S. (2004) Eocene dry climate and woodland vegetation reconstructed from fossil leaves from northern Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology, 213, 115–123.Google Scholar
  65. Jais, J. (1997) Oligocene to Pliocene quantitative stratigraphic palynology of the southern Malay Basin, offshore Malaysia. Unpublished Ph.D. thesis, University of Sheffield (321 pp.þ98 plates).Google Scholar
  66. Janzen, D. (1974) Tropical blackwater rivers, animals, and mast fruiting by the Dipterocarpaceae. Biotropica, 6, 69–103.CrossRefGoogle Scholar
  67. Janzen, D. (1976) Why bamboos wait so long to flower. Annual Review of Ecology and Systematics, 7, 347–391.CrossRefGoogle Scholar
  68. Jaramillo, C. and Dilcher, D. L. (2000) Microfloral diversity patterns of the last Paleocene– Eocene interval in Colombia, northern South America. Geology, 28, 815–818.CrossRefGoogle Scholar
  69. Jaramillo, C., Rueda, M. J., and Mora, G. (2006) Cenozoic plant diversity in the neotropics. Science, 311, 1893–1896.CrossRefGoogle Scholar
  70. Johnson, K. R. and Ellis, B. (2002) A tropical rain forest in Colorado 1.4 million years after the Cretaceous–Tertiary boundary. Science, 296, 2379–2383.Google Scholar
  71. Kubitski, K. (2005) Major evolutionary advances in the history of green plants. Acta Phytotaxonomica et Geobotanica, 56, 1–10.Google Scholar
  72. Kutschera, U. and Niklas, K. J. (2004) The modern theory of biological evolution: An expanded synthesis. Naturwissenschaften, online publication. Visit b19/plantphysiology/niklas.pdf
  73. Lee, H. S., Davies, S. J., LaFrankie, J. V., Tan, S., Yamakura, T., Itoh, A., Ohkubo, T., and Ashton, P. S. (2002) Floristic and structural diversity of mixed dipterocarp forest in Lambir Hills National Park, Sarawak, Malaysia. Journal of Tropical Forest Science, 14, 379–400.Google Scholar
  74. Legoux, O. (1978) Quelques espe`ces de pollen caracte´ristiques du Ne´oge`ne du Nigeria. Bulletin Centre Recherche Exploration-Production Elf-Aquitaine, 2, 265–317.Google Scholar
  75. Lelono, E. B. (2000) Palynological study of the Eocene Nanggulan Formation, Central Java, Indonesia. Ph.D. thesis, Royal Holloway, University of London (413 pp.).Google Scholar
  76. Lelono, E. B. and Morley, R. J. (2010) Oligocene palynological succession from the East Java Sea. In: R. Hall, and Wilson, M. (Eds.), Southeast Asian Gateway Evolution (Special Publication of the Geological Society of London 198).Google Scholar
  77. Leroy, S. and Dupont, L. (1994) Development of vegetation and continental aridity in northwestern Africa during the Late Pliocene: The pollen record of ODP Site 658. Palaeogeography, Palaeoclimatology, Palaeoecology, 109, 295–316.CrossRefGoogle Scholar
  78. Mai, D. H. (1970) Subtropische Elemente im europa¨ ischen Tertiare. Palaeontol. Abh. Abt. Palaobot., 3, 441–503.Google Scholar
  79. Mai, D. H. (1991) Palaeofloristic changes in Europe and the confirmation of the arctotertiary palaeofloral geofloral concept. Review of Palaeobotany and Palynology, 68, 28–36.CrossRefGoogle Scholar
  80. Manchester, S. R. (1994) Fruits and seeds of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon. Palaeontographica Americana, 58, 1–205.Google Scholar
  81. Manchester, S. R. (1999) Biogeographical relationships of North American Tertiary florasGoogle Scholar
  82. Annals of the Missouri Botanic Garden, 86, 472–522.Google Scholar
  83. Martin, H. A. (1992) The Tertiary of southeastern Australia: Was it tropical? Palaeobotanist, 39, 270–280.Google Scholar
  84. McPhail, M. K., Alley, N. F., Truswell, E. M., and Sluiter, R. K. (1994) Early Tertiary vegetation: Evidence from spores and pollen. In: R. S. Hill (Ed.), History of Australian vegetation: Cretaceous to Recent (pp. 262–275). Cambridge University Press, Cambridge, U.K.Google Scholar
  85. Mebradu, S., Imnanobe, J., and Kpandei, L. Z. (1986) Palynostratigraphy of the Ahoko sediments from the Nupe Basin, N.W. Nigeria. Review of Palaeobotany and Palynology, 48, 303–310.Google Scholar
  86. Meijaard, E. (2003) Mammals of south-east Asian islands and their Late Pleistocene environments. J. Biogeography, 30, 1245–1257.CrossRefGoogle Scholar
  87. Miller, K. G., Fairbanks, R. G., and Mountain, G. S. (1987) Tertiary oxygen isotope synthesis, sea level history and continental margin erosion. Paleoceanography, 2, 1–19.CrossRefGoogle Scholar
  88. Miller, K. G., Mountain, G. S., Browning, J. V., Kominz, M., Sugarman, P. J., Christie-Blick, N., Katz, M. E., and Wright, J. D. (1998) Cenozoic global sea level, sequences, and New Jersey Transect: Results from coastal and continental slope drilling. Reviews of Geophysics, 36, 569–601.CrossRefGoogle Scholar
  89. Miller, K. G., Sugarman, P. J., Browning, J. V., Kominz, M. A., Ollson, R. K., Feigenssen, M. D., and Hernandez, J. C. (2004) Upper Cretaceous sequences and sea-level history. New Jersey Coastal Plain Geological Society of America Bulletin, 32, 368–393.CrossRefGoogle Scholar
  90. Moles, A. T., Ackerly, D. D., Webb, C. O., Tweddle, J. C., Dickie, J. B., and Westoby, M. (2005) A brief history of seed size. Science, 307, 576–580.CrossRefGoogle Scholar
  91. Monteillet, J. and Lappartient, J.-R. (1981) Fruits et graines du Cre´tace supe´rieur des Carrie`res de Paki (Senegal). Review of Palaeobotany and Palynology, 34, 331–344.CrossRefGoogle Scholar
  92. Morley, R. J. (1991) Tertiary stratigraphic palynology in Southeast Asia: Current status and new directions. Geol. Soc. Malaysia. Bull., 28, 1–36.Google Scholar
  93. Morley, R. J. (1998) Palynological evidence for Tertiary plant dispersals in the Southeast Asian region in relation to plate tectonics and climate. In: R. Hall and J. D. Holloway (Eds.), Biogeography and Geological Evolution of SE Asia (pp. 211–234). Backhuys, Leiden, The Netherlands.Google Scholar
  94. Morley, R. J. (2000a) Geological Evolution of Tropical Rain Forests (362 pp.). John Wiley & Sons, London.Google Scholar
  95. Morley, R. J. (2000b) The Tertiary history of the Malesian Flora. In: L. G. Saw et al. (Eds.), Proceedings of the IVth Flora Malesiana Symposium, Kuala Lumpur (pp. 197–210). Forest Research Institute, Kepong, Malaysia.Google Scholar
  96. Morley, R. J. (2001) Why are there so many primitive angiosperms in the rain forests of Asia– Australia? In: I. Metcalfe, J. M. B. Smith, M. Morwood, and I. Davidson (Eds.), Floral and Faunal Migrations and Evolution in SE Asia–Australia (pp. 185–200). Swetz & Zeitliner, Lisse, The Netherlands.Google Scholar
  97. Morley, R. J. (2003) Interplate dispersal routes for megathermal angiosperms. Perspectives in Plant Ecology, Evolution and Systematics, 6, 5–20.CrossRefGoogle Scholar
  98. Morley, R. J. (in press) A Review of the Cenozoic Palaeoclimate History of Southeast Asia. SAGE Biology volume.Google Scholar
  99. Morley, R. J. (in press) Ecology of Tertiary coals in SE Asia. In: T. A. Moore (Ed.), Coal Geology of Indonesia: From Peat Formation to Oil Generation (Advances in Sedimentology Series). Elsevier, North-Holland, The Netherlands.Google Scholar
  100. Morley, R. J. and Dick, C. W. (2003) Missing fossils, molecular clocks and the origin of the Melastomataceae. American J. Botany, 90, 1638–1644.CrossRefGoogle Scholar
  101. Morley, R. J. and Morley, H. P. (2011, in press) Neogene climate history of the Makassar Straits. In: R. Hall and M. Wilson (Eds.), Southeast Asian Gateway Evolution (Special Publication of the Geological Society of London 198).Google Scholar
  102. Morley, R. J. and Richards, K. (1993) Gramineae cuticle: A key indicator of Late Cenozoic climatic change in the Niger Delta. Review of Palaeobotany and Palynology, 77, 119–127.CrossRefGoogle Scholar
  103. Morley, R. J., Morley, H. P., and Restrepo-Pace, P. (2003) Unravelling the tectonically controlled stratigraphy of the West Natuna Basin by means of palaeo-derived Mid Tertiary climate changes. 29th IPA Proceedings (Vol. 1).Google Scholar
  104. Morley, R. J., Morley, H. P., Wonders, A. A., Sukarno, H. W., and Van Der Kaars, S. (2004) Biostratigraphy of modern (Holocene and Late Pleistocene) sediment cores from Makassar Straits. In: Deepwater and Frontier Exploration in Asia & Australasia Proceedings, Jakarta, December 2004.Google Scholar
  105. Muller, J. (1966) Montane pollen from the Tertiary of N.W. Borneo. Blumea, 14, 231–235.Google Scholar
  106. Muller, J. (1972) Palynological evidence for change in geomorphology, climate and vegetation in the Mio-Pliocene of Malesia. In: P. S. Ashton and M. Ashton (Eds.), The Quaternary Era in Malesia (Geogr. Dept., University of Hull, Misc. Ser 13, pp. 6–34). University of Hull, Hull, U.K.Google Scholar
  107. Muller, J., De di Giacomo, E., and Van Erve, A.W. (1987) A palynological zonation for the Cretaceous, Tertiary and Quaternary of northern South America. American Association of Stratigraphic Palynologists, Contributions Series 16, 7–76.Google Scholar
  108. Nicklas, K. J., Tiffney, B. H., and Knoll, A. (1980) Apparent changes in the diversity of fossil plants. Evolutionary Biology, 12, 1–89.CrossRefGoogle Scholar
  109. Parrish, J. T., Ziegler, A. M., and Scotese, C. R. (1982) Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 40, 67–101.CrossRefGoogle Scholar
  110. Pearson, P. H. and Palmer, M. R. (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406, 695–699.CrossRefGoogle Scholar
  111. Pearson, P. H., Ditchfield, P. W., Singano, J., Harcourt-Brown, J. C., Nicholas, C. J., Olsson, K. R., Shackleton, N. J., and Hall, M. A. (2001) Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413, 481–487.CrossRefGoogle Scholar
  112. Palike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K., Lear, C. L., Shackleton, N. J., Tripati, A. K., and Wade, B.S. (2006) The heartbeat of the Oligocene climate system. Science, 314, 1894–1898.CrossRefGoogle Scholar
  113. Pole, M. S. and McPhail, M. K. (1996) Eocene Nypa from Regatta Point, Tasmania. Review of Palaeobotany and Palynology, 92, 55–67.CrossRefGoogle Scholar
  114. Posamentier, H. W. and Allen, G. P. (1999) Siliciclastic Sequence Stratigraphy: Concepts and Applications (SEPM Special Publication). Society of Economic Paleontologists and Mineralogists, Tulsa, OK.Google Scholar
  115. Prance, G.T. (1982) Biological Diversification in the Tropics. Columbia University Press, New York.Google Scholar
  116. Pribatini, H. and Morley, R. J. (1999) Palynology of the Pliocene Kalibiuk and Kaliglagah Formations, near Bumiayu, Central Java. In: Tectonics and Sedimentation of Indonesia, Indonesian Sedimentologists Forum (Special Publication No. 1, p. 53, Abstract).Google Scholar
  117. Quade, J. J., Cerling, T. E., and Bowman, J. R. (1989) Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 342, 163–166.CrossRefGoogle Scholar
  118. Raup, D. M. (1975) Taxonomic diversity estimation using rarefaction. Paleobiology, 1, 333–342.Google Scholar
  119. Reid, E. M. and Chandler, M. E. J. (1933) The Flora of the London Clay (561 pp.). British Museum (Natural History), London.Google Scholar
  120. Reyment, R. A. (1965) Aspects of the Geology of Nigeria (145 pp.). University Press, Ibadan, Nigeria.Google Scholar
  121. Richards, K. (2000) Grass pollen and charred cuticle in the Amazon Basin. Linnean Society Palynology Special Interest Group Meeting, October 2000 (Abstract).Google Scholar
  122. Richards, K. and Lowe, S. (2003) Plio-Pleistocene palynostratigraphy of the Amazon Fan, offshore Brazil: Insights into vegetation history, palaeoclimate and sequence stratigraphy.Google Scholar
  123. Conference of American Association of Stratigraphic Palynologists (AASP), London, England, September 2002 (Abstract).Google Scholar
  124. Richardson, J. E., Pennington, R. T., Pennington, T. D., and Hollingsworth, P. M. (2001) Rapid diversification of a species-rich genus of Neotropical rain forest trees. Science, 293, 2242–2245.CrossRefGoogle Scholar
  125. Rull, V. (1999) Palaeofloristic and palaeovegetational changes across the Paleocene/Eocene boundary in northern South America. Review of Palaeobotany and Palynology, 107, 83–95.CrossRefGoogle Scholar
  126. Salami, M. B. (1991) Palynomorph taxa from the “Lower Coal Measures” deposits (?Campanian–Maastrichtian) of Anambra Trough, Southeastern Nigeria. J. African Earth Sciences, 11, 135–150.Google Scholar
  127. Salard-Cheboldaeff, M. (1990) Intertropical African palynostratigraphy from Cretaceous to Late Quaternary times. J. African Earth Sciences, 11, 1–24.CrossRefGoogle Scholar
  128. Schneider, H., Schuettpelz, E., Pryer, K. M., Cranfill, R., Magallon, S., and Lupia, R. (2004) Ferns diversified in the shadow of angiosperms. Nature, 428, 553–557.CrossRefGoogle Scholar
  129. Sepulchre, P., Ramstein, G., Fluteau, F., Schuster, M., Tiercelin, J.-J. and Brunet, M. (2006) Tectonic uplift and eastern Africa aridification. Science, 313, 1419–1422.CrossRefGoogle Scholar
  130. Shackleton, N. and Boersma, A. (1983) The climate of the Eocene ocean. J. Geological Society, 138, 153–157.CrossRefGoogle Scholar
  131. Slik, J. W. F., Poulsen, A. D., Ashton, P. S., Cannon, C. H., Eichhorn, K. A. O., Kartawinata, K., Lanniari, I., Nagamasu, H., Nakagawa, M., van NieuwstadtGoogle Scholar
  132. M. G. L., et al. (2003) A floristic analysis of the lowland dipterocarp forests of Borneo. J. Biogeography, 30, 1517–1531.Google Scholar
  133. Smith, A. G., Smith, D. G., and Funnell, B. M. (1994) Atlas of Mesozoic and Cenozoic coastlines (99 pp.). Cambridge University Press, Cambridge, U.K.Google Scholar
  134. Stebbins, G. L. (1974) Flowering Plants: Evolution above the Species Level. Belknap Press, Cambridge, MA.Google Scholar
  135. Takhtajan, A. (1969) Flowering Plants, Origin and Dispersal (transl. C. Jeffrey, 300 pp.). Oliver & Boyd, Edinburgh/Smithsonian Institution, Washington, D.C.Google Scholar
  136. Thorne, R. F. (1976) When and where might the tropical angiospermous flora have originated? In: D. J. Mabberley and Chang Kiaw Lan (Eds.), Tropical Botany (Vol. 29, pp. 183–189). Gardens Bulletin, Singapore.Google Scholar
  137. Tiffney, B. H. (1985) Perspectives on the origin of the floristic similarity between eastern Asia and Eastern North America. J. Arnold Arboretum, 66, 73–94.Google Scholar
  138. Upchurch, G. R. and Wolfe, J. A. (1987) Mid-Cretaceous to Early Tertiary vegetation and climate: Evidence from fossil leaves and woods. In: E. M. Friis, W. G. Chaloner, and P. H. Crane (Eds.), The Origins of Angiosperms and Their Biological Consequences (pp. 75–105). Cambridge University Press, Cambridge, U.K.Google Scholar
  139. Urrego, L. E. (1997) Los Bosques Inundables del Medio Caqueta: Caracterizacio´n y Sucesio´n (Estudios en la Amazonia Colombiana 14, pp. 1–133). Tropenbos, Bogota´ [in Spanish].Google Scholar
  140. Van der Hammen, T. and Hooghiemstra, H. (2000) Neogene and Quaternary history of vegetation, climate and plant diversity in Amazonia. Quaternary Science Reviews, 19, 725–742.CrossRefGoogle Scholar
  141. Van der Kaas, W. A. (1991) Palynology of eastern Indonesian marine piston-cores: A Late Quaternary vegetational and climatic history for Australasia. Palaeogeography, Palaeoclimatology, Palaeoecology, 85, 239–302.CrossRefGoogle Scholar
  142. Van Steenis, C. G. G. J. (1962) The land-bridge theory in botany. Blumea, 11, 235–372.Google Scholar
  143. Whitmore, T. C. and Prance, G. T. (1987) Biogeography and Quaternary History in Tropical America. Clarendon Press, Oxford, U.K.Google Scholar
  144. Wilf, P., Ruben Cuneo, M., Johnson, K. R., Hicks, J. F., Wing, S. L., and Obradovich, J. D. (2003) High plant diversity from Eocene South America: Evidence from Patagonia. Science, 300, 122–125.CrossRefGoogle Scholar
  145. Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, W. H., Ross, C. A., and van Wagoner, J. C. (1988) Sea-level Changes: An Integrated Approach (SEPM Special Publication 42, 407 pp.). Society of Economic Paleontologists and Mineralogists, Tulsa, OK.Google Scholar
  146. Wing, S. L. and Tiffney, B. H. (1987) Interactions of angiosperms and herbivorous tetrapods through time. In: E. M. Friis, W. G. Chaloner, and P. H. Crane (Eds.), The Origins of Angiosperms and Their Biological Consequences (pp. 203–224). Cambridge University Press, Cambridge, U.K.Google Scholar
  147. Wolfe, J. A. (1977) Palaeogene Floras from the Gulf of Alaska Region (U.S. Geological Survey Professional Paper 997, 208 pp.). U.S. Geological Survey, Reston, VA.Google Scholar
  148. Wolfe, J. A. (1985) Distributions of major vegetation types during the Tertiary. In: E. T. Sundquist and W. S. Broekner (Eds.), The Carbon Cycle and Atmospheric CO2 :Google Scholar
  149. Natural Variations, Archean to Present (American Geophysical Union Monograph 32, pp. 357–376). American Geophysical Union, Washington, D.C.Google Scholar
  150. Wright, S. J. (2001) Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia, 130, 1–14.Google Scholar
  151. Yamanoi, T. (1974) Note on the first fossil record of genus Dacrydium from the Japanese Tertiary. J. Geological Society of Japan, 80, 421–423.CrossRefGoogle Scholar
  152. Yamanoi, T., Tsuda, K., Itoigawa, J., Okamoto, K., and Tacuchi, K. (1980) On the mangrove community discovered from the Middle Miocene formations in southwest Japan. J. Geological Society of Japan, 86, 635–638.CrossRefGoogle Scholar
  153. Zachos, J. C., Pagini, M., Sloan, L., Thomas, E., and Billups, K. (2001) Trends, rhythms and aberrations in global climate 65Ma to Present. Science, 292, 686–693.CrossRefGoogle Scholar
  154. Zachos, J. C., Wara, W. M., Bohaty, S., Delaney, M. L., Pettrizzo, M. R., Brill, A., Bralower, T. J. and Premoli-Silva, I. (2003) A transient rise in tropical sea surface temperature during the Paleocene–Eocene thermal maximum. Sciencexpress, 23 October, 1–4.Google Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.School of Geography and Environmental ScienceMonash UniversityMelbourneAustralia
  2. 2.Dept. of GeologyRoyal Holloway UniversitySurreyUK

Personalised recommendations