Skip to main content

Dynamic Behavior of Persistent Organic Pollutants in Soil and Their Interaction with Organic Matter

  • Conference paper
Molecular Environmental Soil Science at the Interfaces in the Earth’s Critical Zone

Abstract

Persistent organic pollutants (POPs) pose threat to environment because of their potential for longrange atmospheric transport, bioaccumulation and toxicity. The POPs behave dynamically in the environment according to their nature of action like volatilization, sorption, desorptin and transportation from their source of production to some where. These POPs migrate on air currents from warmer regions of the globe towards the colder Polar Regions. Once they reach colder temperatures they condense, precipitate out, and are deposited again on the earth’s surface. Environmental variables like temperature, soil pH, moisture have serious effects on the POPs behavior in the soil. Inorganic minerals also have good interaction with the xenobiotics and play an important role in the transformation of xenobiotics. The manganese and iron oxides and clay minerals (e.g. smectites containing Fe(III)) have well-documented properties to promote the oxidation of a number of organic pollutants. Organic matter is considered the most important factor limiting availability and mobility of POPs in soil and a substantial percentage of the total amount of an organic contaminant applied to a soil may become associated with the humic fraction of that soil. Organic pollutants strongly adsorb to carbonaceous sorbents such as black carbon. In particular, activated charcoal (AC) is known for a strong adsorptive capacity due to its high specific surface area. Adsorption to activated charcoal can render hazardous organic pollutants in soils and sediments less available to organisms and hinder their dispersal into unaffected environments. Some studies also show that some sorbents from natural organic materials, such as peat, soybean stalk and pine needle under superheated temperature/ pressure conditions, for sorption of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. Natural materials significantly decrease the extractability and bioavailability of PAHs from contaminated soils. Main objective of this review article is to compile some valuable information regarding the existence, dynamic behavior, effect of environmental variables on POPs and their interactions with organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Alexander M (2000) Aging bioavailability and overestimation of risk from environmental pollutants. Environ. Sci. Technol. 34: 4259–4265

    Article  CAS  Google Scholar 

  • Aresta M, Pastore T (2001) Abs II European meeting on Environmental Chemistry Digion, 2–15 December, pp. 85

    Google Scholar 

  • Bollag JM, Loll MJ (1983) Incorporation of xenobiotics into soil humus. Experientia 39: 1221–1231

    Article  CAS  Google Scholar 

  • Bucheli TD, Gustafsson O (2000) Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption bservations. Environ. Sci. Technol. 34: 5144–5151

    Article  CAS  Google Scholar 

  • Burauel P, Fuhr F (2000) Formation and long-term fate of nonextractable residues in outdoor lysimeter studies. Environ. Pollut.108: 45–52

    Article  CAS  Google Scholar 

  • Burgess RM, Perron MM, Friedman CL, Suuberg EM, Pennell KG, Cantwell MG, Pelletier MC, Ho KT, Serbst JR, Ryba SA (2009) Evaluation of the effects of coal fly ash amendments on the toxicity of a contaminated marine sediment. Environ. Toxicol. Chem. 28: 26–35

    Article  CAS  Google Scholar 

  • Chiou CT, McGroddy SE, Kile DE (1998) Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environ Sci. Technol. 32: 264–269

    Article  CAS  Google Scholar 

  • Cho YM, Smithenry DW, Ghosh U, Kennedy AJ, Millward RN, Bridges TS, Luthy RG (2007) Field methods for amending marine sediment with activated carbon and assessing treatment effectiveness. Marine Environ. Res. 64: 541–555

    Article  CAS  Google Scholar 

  • Cornelissen G, Breedveld GD, Kalaitzidis S, Christanis K, Kibsgaard A, Oen AMP (2006) Strong sorption of native PAHs to pyrogenic and unburned carbonaceous geosorbents in sediments. Environ. Sci. Technol. 40: 1197–1203

    Article  CAS  Google Scholar 

  • Cornelissen G, Gustafsson O, Bucheli TD, Jonker MTO, Koelmans AA, Van Noort PCM (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ. Sci. Technol. 39: 6881–6895

    Article  CAS  Google Scholar 

  • Eriksson M, Dalhammar G, Borg-Karlson AK (1999) Aerobic degradation of a hydrocarbon mixture in a natural uncontaminated potting soil by indigenous microorganisms at 20 °C and 6 °C. Appl. Microbiol. Biot. 51: 532–535

    Article  CAS  Google Scholar 

  • Fabio F, Alessandro P (2001) Effect of Humic Substance on the Bioavailability and aerobic biodegradation of polychlorinaeed biphenyls in a model soil. Biotechnol. Bioeng. 77: 204–221

    Google Scholar 

  • Ghosh U (2007) The role of black carbon in influencing availability of PAHs in sediments. Human Ecol. Risk Assess. 13: 276–285

    Article  CAS  Google Scholar 

  • Jota MAT, Hassett JP (1991) effect of environmental variable on binding of PCB Congener by dissolved humic substances. Environ. Toxicol. Chem. 10: 483–491

    Article  CAS  Google Scholar 

  • Khstner M, Mahro B (1996) Microbial degradation of polycyclic aromatic hydrocarbonsin soils affected by the organic matrix of compost. Appl Microbiol Biot. 44: 668–675

    Article  Google Scholar 

  • Klecka G, Boethling B, Franklin J, Graham G, Grady L, Howard P, Kannan K, Larson R, Mackay D, Muir D, van der Meent K (2000) Evaluation of persistence and long-range transport of organic chemicals in the environment. SETAC Special Publication Series: Pensacola, FL

    Google Scholar 

  • Krauss M, Wilcke W (2001) Predicting soil-water partitioning of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) by desorption with methanol-water mixtures at different temperatures. Environ. Sci. Technol. 35: 2319–2325

    Article  CAS  Google Scholar 

  • Koelmans AA, Jonker MTO, Cornelissen G, Bucheli TD, Van Noort PCM, Gustafsson O (2006) Black carbon: the reverse of its dark side. Chemo-sphere 63: 365–377

    CAS  Google Scholar 

  • Kohl SD, Rice JA (1998) The binding of contaminants to humin:a mass balance. Chemosphere 36: 251–261

    Article  CAS  Google Scholar 

  • Loiselle S, Branca M, Mulas G, Cocco G (1997) Selective mechanochemical dehalogenation of chlorobenzenes over calcium hydride. Environ. Sci. Technol. 31: 261–265

    Article  CAS  Google Scholar 

  • Millward RN, Bridges TS, Ghosh U, Zimmerman JR, Luthy RG (2005) Addition of activated carbon to sediments to reduce PCB bioaccumulation by a polychaete (Neanthes arenaceodentata) and an amphipod (Leptocheirus plumulosus). Environ. Sci. Technol. 39: 2880–2887

    Article  CAS  Google Scholar 

  • Mio H, Saeki S, Kano J, Saito F (2002) Estimation of mechanochemical dechlorinated rate of poly (vinyl chloride). Environ. Sci. Technol. 36: 1344–1348

    Article  CAS  Google Scholar 

  • Mohammed S, Sorensen DL, Sims RC, Sims JL (1998) Pentachlorophenol and phenanthrene biodegradation in creosote contaminated aquifer material. Chemosphere 37: 103–111

    Article  CAS  Google Scholar 

  • Mortland MM, Halloran LJ (1976) Polymeri-zation of aromatic molecules on smectite. Soil Sci. Am. J. 40: 367–370

    Article  CAS  Google Scholar 

  • Moza P, Schneunert I, Klein W, Korte F (1979) Studies with 2,4′,5-trichlorobiphenyl-14C and 2,2′,4,4′,6-pentachlorobiphenyl-14C in carrots, sugar beets, and soil. J. Agric. Food Chem. 27: 1120–1124

    Article  CAS  Google Scholar 

  • Nasser A, Sposito G, Cheney MA (2000) Mechanochemical degradation of 2,4-D adsorbed on synthetic birnessite. Colloids Surf. A 163: 117–123

    Article  CAS  Google Scholar 

  • Northcott GL, Jones KC (2000) Experimental approaches and analytical techniques for determining organic compound residues in soils and sediment. Environ. Pollut 108: 19–43

    Article  CAS  Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environ. Pollut. 108: 103–112

    Article  CAS  Google Scholar 

  • Phillips TM, Seech AG, Liu D, Lee H, Trevors JT (2000) Monitor ing biodegradation of creosote in soils using radiolabels, toxicity tests, and chemical analysis. Environ. Toxicol. 15: 99–106

    Article  CAS  Google Scholar 

  • Pizzigallo MDR, Ruggiero P, Crecchio C, Mininni R (1995) Manganese and iron oxides as reactants for oxidation of chlorophenols. Soil Sci. Soc. Am. J. 59: 444–452

    Article  CAS  Google Scholar 

  • Shin JY, Buzgo CM, Cheney MA (2000) Mechanochemical degradation of atrazine adsorbed on four synthetic manganese oxides. Colloids Surf. A 172: 113–123

    Article  CAS  Google Scholar 

  • Strek HJ, Weber JB (1982) Adsorption and reduction in bioactivity of polychlorinated biphenyl (Aroclor 1254) to redroot pigweed by soil organic matter and montmorillonite clay. Soil Sci. Soc. Am. J. 46: 318–322

    Article  CAS  Google Scholar 

  • Strek HJ, Weber JB (1982) Behavior of polychlorinated biphenyls (PCBs) in soils and plants. Environ. Pollut. A 28: 291–312

    Article  CAS  Google Scholar 

  • Tang J, Petersen EJ, Huang Q, Weber Jr WJ (2007) Development of engineered natural organic sorbents for environmental applications: 3. Reducing PAH mobility and bioavailability in contaminated soil and sediment systems. Environ. Sci. Technol. 41: 2901–2907

    Article  CAS  Google Scholar 

  • Tang J, Weber WJ (2006) Development of engineered natural organic sorbents for environmental applications. 2. Sorption characteristics and capacities with respect to phenanthrene. Environ. Sci. Technol. 40: 1657–1663

    Article  CAS  Google Scholar 

  • Tomaszewski JE, Werner D, Luthy RG (2007) Activated carbon amendment as a treatment for residual DDT in sediment froma superfund site in San Francisco Bay, Richmond, California, USA. Environ. Toxicol. Chem. 26: 2143–2150

    Article  CAS  Google Scholar 

  • Vasilyeva GK, Kreslavski VD, Oh BT, Shea PJ (2001) Potential of activated carbon to decrease 2,4,6-trinitrotoluene toxicity and accelerate soil decontamination. Environ. Toxicol. Chem. 20: 965–971

    Article  CAS  Google Scholar 

  • Weber WJ, Tang J, Huang Q (2006) Development of engineered natural organic sorbents for environmental applications. 1. Materials, approaches, and characterizations. Environ. Sci. Technol. 40: 1650–1656

    Article  CAS  Google Scholar 

  • Weilin H, Ping’an P, Zhiqiang Y, Jiamo F (2003) Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Appl. Geochem. 18: 955–972

    Article  Google Scholar 

  • Whyte LG, Bourbonniere L, Greer CG (1997) Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl. Environ. Microbiol. 63: 3719–3723

    CAS  Google Scholar 

  • Xie H, Guetzloff TF, Rice JA (1997) Fractionation of pesticideresidues bound to humin. Soil Sci. 162: 421–429

    Article  CAS  Google Scholar 

  • Yuan SY, Wei SH, Chang BV (2000) Biodegra-dation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere 41: 1463–1468

    Article  CAS  Google Scholar 

  • Zimmerman JR, Ghosh U, Millward RN, Bridges TS, Luthy RG (2004) Addition of carbon sorbents to reduce PCB and PAH bioavailability in marine sediments: physicochemical tests. Environ. Sci. Technol. 39 (4): 1199–1200

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hayat, M.T., Xu, J., Ding, N., Mahmood, T. (2010). Dynamic Behavior of Persistent Organic Pollutants in Soil and Their Interaction with Organic Matter. In: Xu, J., Huang, P.M. (eds) Molecular Environmental Soil Science at the Interfaces in the Earth’s Critical Zone. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05297-2_65

Download citation

Publish with us

Policies and ethics