Skip to main content

All-Transition Metal Aromaticity and Antiaromaticity

  • Chapter
  • First Online:
Metal-Metal Bonding

Part of the book series: Structure and Bonding ((STRUCTURE,volume 136))

Abstract

Though aromaticity in compounds containing a transition-metal atom has already been discussed for quite a long time, aromaticity in all-transition metal systems have been recognized only recently. There are examples of σ-, π-, and δ-aromaticity based on s-, p-, and d-AOs. We derived the counting rules for σ −, π-, δ-, and ϕ-aromaticity/antiaromaticity for both singlet/triplet coupled model triatomic and tetratomic systems so that one could use those to rationalize aromaticity and antiaromaticity in all-transition metal systems. These rules can be easily extended for any cyclic systems composed out of odd or even number of atoms. We elucidated the application of these rules to the all-transition metal cyclic systems: Au3 +/Au3 , Na2Zn3, Hg4 6 −, Mo3O9 2 −, Sc3 , Hf3, and Ta3 clusters. We believe that the use of concepts of aromaticity, antiaromaticity and conflicting aromaticity can be an important theoretical tool for deciphering chemical bonding in various known and novel chemical compounds containing transition metal atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cotton FA, Curtis NF, Harris CB, Johnson BFG, Lippard SJ, Mague JT, Robinson WR, Wood JS (1964) Mononuclear and polynuclear chemistry of rhenium (III): its pronounced homophilicity. Science 145:1305–1307

    Article  CAS  Google Scholar 

  2. Cotton FA, Murillo CA, Walton RA (2005) Multiple bonds between metal atoms, 3rd edn. Springer, New York

    Book  Google Scholar 

  3. Nguyen T, Sutton AD, Brynda M, Fettiger JC, Long GJ, Power PP (2005) Synthesis of a stable compound with fivefold bonding between two chromium(I) centers. Science 310:844–847

    Article  CAS  Google Scholar 

  4. Zhai HJ, Averkiev BB, Zubarev DY, Wang LS, Boldyrev AI (2007) δ Aromaticity in [Ta3O3]. Angew Chem Int Ed 46:4277–4280

    Article  CAS  Google Scholar 

  5. Averkiev BB, Boldyrev AI (2007) Hf3 cluster is triply (σ-, π-, and δ-) aromatic in the lowest D3h 1A1 . State J Phys Chem A 111:12864–12866

    Article  CAS  Google Scholar 

  6. Tsipis AC, Kefalidis CE, Tsipis CA (2008) The role of the 5f orbitals in bonding, aromaticity, and reactivity of planar isocyclic and heterocyclic uranium clusters. J Am Chem Soc 130: 9144–9155

    Article  CAS  Google Scholar 

  7. Zubarev DY, Averkiev BB, Zhai HJ, Boldyrev AI, Wang LS (2008) Aromaticity and antiaromaticity in transition-metal systems. Phys Chem Chem Phys 10:257–267

    Article  CAS  Google Scholar 

  8. Manthey D (2004) Orbital viewer 1.04 http://www.orbitals.com/orb/ov.htm

  9. Zubarev DY, Boldyrev AI (2008) Developing paradigm of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207–5217

    Article  CAS  Google Scholar 

  10. Alexandrova AN, Boldyrev AI (2003) σ-Aromaticity and σ-antiaromaticity in alkali metal and alkaline earth metal small clusters. J Phys Chem A 107:554–560

    Article  CAS  Google Scholar 

  11. Havenith RWA, De Proft F, Fowler PW, Geerlings P (2004) σ-aromaticity in H3 + and Li3 +: insights from ring-current maps. Chem Phys Lett 407:391–396

    Article  Google Scholar 

  12. Yong L, Wu SD, Chi XX (2007) Theoretical study of aromaticity in small hydrogen and metal cation clusters X3 + (X = H, Li, Na, K, and Cu). Int J Quant Chem 107:722–728

    Article  Google Scholar 

  13. Wannere CS, Corminboeuf C, Wang ZX, Wodrich MD, King RB, Schleyer PVR (2005) Evidence for d orbital aromaticity in square planar coinage metal clusters. J Am Chem Soc 127:5701–5705

    Article  CAS  Google Scholar 

  14. Lin YC, Sundholm D, Juselius J, Cui LF, Li X, Zhai HJ, Wang LS (2006) Experimental and computational studies of alkali-metal coinage-metal clusters. J Phys Chem A 110:4244–4250

    Article  CAS  Google Scholar 

  15. Tsipis AC, Tsipis CA (2003) Hydrometal analogues of aromatic hydrocarbons: a new class of cyclic hydrocoppers(I). J Am Chem Soc 125:1136–1137

    Article  CAS  Google Scholar 

  16. Tsipis CA, Karagiannis EE, Kladou PF, Tsipis AC (2004) Aromatic gold and silver ‘rings’: hydrosilver(I) and hydrogold(I) analogues of aromatic hydrocarbons. J Am Chem Soc 126:12916–12929

    Article  CAS  Google Scholar 

  17. Tsipis AC, Tsipis CA (2005) Ligand-stabilized aromatic three-membered gold rings and their sandwichlike complexes. J Am Chem Soc 127:10623–10638

    Article  CAS  Google Scholar 

  18. Tsipis AC, Stalikas AV (2007) A new class of all-metal aromatic hydrido-bridged binary coinage metal heterocycles. A DFT study. New J Chem 31:852–859

    Article  CAS  Google Scholar 

  19. Chandrasekhar J, Jemmis ED, Schleyer PVR (1979) Double aromaticity: aromaticity in orthogonal planes. The 3,5-dehydrophenyl cation. Tetrahedron Lett 39:3707–3710

    Article  Google Scholar 

  20. Martin-Santamaria S, Rzepa HS (2000) Double aromaticity and anti-aromaticity in small carbon rings. Chem Commun 16:1503–1504

    Article  Google Scholar 

  21. Boldyrev AI, Wang LS (2005) All-metal aromaticity and antiaromaticity Chem Rev 105: 3716–3757

    CAS  Google Scholar 

  22. Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS, Steiner E, Fowler PW (2003) Structure and bonding in B6 and B6: planarity and antiaromaticity. J Phys Chem A 107:1359–1369

    Article  CAS  Google Scholar 

  23. Yong L, Chi XX (2007) Theoretical study on the aromaticity of dianions X3 2 − (X = Zn, Cd, Hg). J Mol Struct THEOCHEM 818:93–99

    Article  CAS  Google Scholar 

  24. Kuznetsov AE, Boldyrev AI (2004) A single π-bond captures 3, 4 and 5 atoms. Chem Phys Lett 388:452–456

    Article  CAS  Google Scholar 

  25. Chattaraj PK, Giri S (2008) Variation in aromaticity and bonding patterns in a reaction cycle involving Be3 2 − and Mg3 2 − dianions. J Mol Struct: THEOCHEM 865:53–56

    Article  CAS  Google Scholar 

  26. Roy DR, Chattaraj PK (2008) Reactivity, selectivity, and aromaticity of Be3 2 − and its complexes. J Phys Chem A 112:1612–1621

    Article  CAS  Google Scholar 

  27. Kuznetsov AE, Corbett JD, Wang LS, Boldyrev AI (2001) Aromatic mercury clusters in ancient amalgams. Angew Chem Int Ed 40:3369–3372

    Article  CAS  Google Scholar 

  28. Li X, Kuznetsov AE, Zhang HF, Boldyrev AI, Wang LS (2001) Observation of all-metal aromatic molecules. Science 291:859–861

    Article  CAS  Google Scholar 

  29. Huang X, Zhai HJ, Kiran B, Wang LS (2005) Observation of d-orbital aromaticity. Angew Chem Int Ed 44:7251–7254

    Article  CAS  Google Scholar 

  30. Chi XX, Liu Y (2007) Theoretical evidence of d-orbital aromaticity in anionic metal X3 (X = Sc, Y, La) clusters. Int J Quant Chem 107:1886–1896

    Article  CAS  Google Scholar 

  31. Wang B, Zhai HJ, Huang X, Wang LS (2008) On the electronic structure and chemical bonding in the tantalum trimer cluster. J Phys Chem A 112:10962–10967

    Article  CAS  Google Scholar 

  32. Alvarado-Soto L, Ramirez-Tagle R, Arratia-Perez R (2008) Spin–orbit effects on the aromaticity of the Re3Cl9 and Re3Br9 clusters Chem Phys Lett 467:94–96

    Google Scholar 

  33. Alvarado-Soto L, Ramirez-Tagle R, Arratia-Perez R (2009) Spin-orbit effects on the aromaticity of the Re3X9 2 − (X) Cl, Br) cluster ions. J Phys Chem A 113:1671–1673

    Article  CAS  Google Scholar 

  34. Thorn DL, Hoffmann R (1979) Delocalization in metallocycles. Nouv J Chim 3:39–45

    CAS  Google Scholar 

  35. Elliot GP, Roper WR, Waters JM (1982) Metallacyclohexatrienes or metallabenzenes. Synthesis of osmabenzene derivatives and X-ray crystal structure of [Os(CSCHCHCHCH)(CO)(PPh3)2]. J Chem Soc Chem Commun 811–813

    Google Scholar 

  36. Bleeke JR (2001) Metallabenzenes Chem Rev 101:1205–1228

    Article  CAS  Google Scholar 

  37. Wright LJ (2006) Metallabenzenes and metallabenzenoids Dalton Trans 1821–1827

    Google Scholar 

  38. Landorf WC, Haley MM (2006) Recent advances in metallabenzene chemistry. Angew Chem Int Ed 45:3914–3936

    Article  CAS  Google Scholar 

  39. Profilet RD, Fanwick PE, Rothwell IP (1992) 1,3-Dimetallabenzene derivatives of niobium or tantalum. Angew Chem Int Ed 31:1261–1263

    Article  Google Scholar 

  40. Fernandez I, Frenking G (2007) Aromaticity in metallabenzenes Chem Eur J 13:5873–5884

    Article  CAS  Google Scholar 

  41. Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS (2006) All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord Chem Rev 250:2811–2866

    Article  CAS  Google Scholar 

  42. Zubarev DY, Boldyrev AI (2007) Comprehensive analysis of chemical bonding in boron clusters. J Comput Chem 28:251–268

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work done was supported by the National Science Foundation under Grant CHE-0714851. Computer time from the Center for High Performance Computing at Utah State University is gratefully acknowledged. The computational resource, the Uinta cluster supercomputer, was provided through the National Science Foundation under Grant CTS-0321170 with matching funds provided by Utah State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Boldyrev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sergeeva, A.P., Averkiev, B.B., Boldyrev, A.I. (2010). All-Transition Metal Aromaticity and Antiaromaticity. In: Parkin, G. (eds) Metal-Metal Bonding. Structure and Bonding, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05243-9_8

Download citation

Publish with us

Policies and ethics