All-Transition Metal Aromaticity and Antiaromaticity

  • Alina P. Sergeeva
  • Boris B. Averkiev
  • Alexander I. Boldyrev
Part of the Structure and Bonding book series (STRUCTURE, volume 136)


Though aromaticity in compounds containing a transition-metal atom has already been discussed for quite a long time, aromaticity in all-transition metal systems have been recognized only recently. There are examples of σ-, π-, and δ-aromaticity based on s-, p-, and d-AOs. We derived the counting rules for σ −, π-, δ-, and ϕ-aromaticity/antiaromaticity for both singlet/triplet coupled model triatomic and tetratomic systems so that one could use those to rationalize aromaticity and antiaromaticity in all-transition metal systems. These rules can be easily extended for any cyclic systems composed out of odd or even number of atoms. We elucidated the application of these rules to the all-transition metal cyclic systems: Au3 +/Au3 , Na2Zn3, Hg4 6 −, Mo3O9 2 −, Sc3 , Hf3, and Ta3 clusters. We believe that the use of concepts of aromaticity, antiaromaticity and conflicting aromaticity can be an important theoretical tool for deciphering chemical bonding in various known and novel chemical compounds containing transition metal atoms.


Adaptive natural density partitioning All transition metal aromaticity Chemical bonding Cluster Multifold aromaticity 



The work done was supported by the National Science Foundation under Grant CHE-0714851. Computer time from the Center for High Performance Computing at Utah State University is gratefully acknowledged. The computational resource, the Uinta cluster supercomputer, was provided through the National Science Foundation under Grant CTS-0321170 with matching funds provided by Utah State University.


  1. 1.
    Cotton FA, Curtis NF, Harris CB, Johnson BFG, Lippard SJ, Mague JT, Robinson WR, Wood JS (1964) Mononuclear and polynuclear chemistry of rhenium (III): its pronounced homophilicity. Science 145:1305–1307CrossRefGoogle Scholar
  2. 2.
    Cotton FA, Murillo CA, Walton RA (2005) Multiple bonds between metal atoms, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  3. 3.
    Nguyen T, Sutton AD, Brynda M, Fettiger JC, Long GJ, Power PP (2005) Synthesis of a stable compound with fivefold bonding between two chromium(I) centers. Science 310:844–847CrossRefGoogle Scholar
  4. 4.
    Zhai HJ, Averkiev BB, Zubarev DY, Wang LS, Boldyrev AI (2007) δ Aromaticity in [Ta3O3]. Angew Chem Int Ed 46:4277–4280CrossRefGoogle Scholar
  5. 5.
    Averkiev BB, Boldyrev AI (2007) Hf3 cluster is triply (σ-, π-, and δ-) aromatic in the lowest D3h 1A1 . State J Phys Chem A 111:12864–12866CrossRefGoogle Scholar
  6. 6.
    Tsipis AC, Kefalidis CE, Tsipis CA (2008) The role of the 5f orbitals in bonding, aromaticity, and reactivity of planar isocyclic and heterocyclic uranium clusters. J Am Chem Soc 130: 9144–9155CrossRefGoogle Scholar
  7. 7.
    Zubarev DY, Averkiev BB, Zhai HJ, Boldyrev AI, Wang LS (2008) Aromaticity and antiaromaticity in transition-metal systems. Phys Chem Chem Phys 10:257–267CrossRefGoogle Scholar
  8. 8.
    Manthey D (2004) Orbital viewer 1.04
  9. 9.
    Zubarev DY, Boldyrev AI (2008) Developing paradigm of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207–5217CrossRefGoogle Scholar
  10. 10.
    Alexandrova AN, Boldyrev AI (2003) σ-Aromaticity and σ-antiaromaticity in alkali metal and alkaline earth metal small clusters. J Phys Chem A 107:554–560CrossRefGoogle Scholar
  11. 11.
    Havenith RWA, De Proft F, Fowler PW, Geerlings P (2004) σ-aromaticity in H3 + and Li3 +: insights from ring-current maps. Chem Phys Lett 407:391–396CrossRefGoogle Scholar
  12. 12.
    Yong L, Wu SD, Chi XX (2007) Theoretical study of aromaticity in small hydrogen and metal cation clusters X3 + (X = H, Li, Na, K, and Cu). Int J Quant Chem 107:722–728CrossRefGoogle Scholar
  13. 13.
    Wannere CS, Corminboeuf C, Wang ZX, Wodrich MD, King RB, Schleyer PVR (2005) Evidence for d orbital aromaticity in square planar coinage metal clusters. J Am Chem Soc 127:5701–5705CrossRefGoogle Scholar
  14. 14.
    Lin YC, Sundholm D, Juselius J, Cui LF, Li X, Zhai HJ, Wang LS (2006) Experimental and computational studies of alkali-metal coinage-metal clusters. J Phys Chem A 110:4244–4250CrossRefGoogle Scholar
  15. 15.
    Tsipis AC, Tsipis CA (2003) Hydrometal analogues of aromatic hydrocarbons: a new class of cyclic hydrocoppers(I). J Am Chem Soc 125:1136–1137CrossRefGoogle Scholar
  16. 16.
    Tsipis CA, Karagiannis EE, Kladou PF, Tsipis AC (2004) Aromatic gold and silver ‘rings’: hydrosilver(I) and hydrogold(I) analogues of aromatic hydrocarbons. J Am Chem Soc 126:12916–12929CrossRefGoogle Scholar
  17. 17.
    Tsipis AC, Tsipis CA (2005) Ligand-stabilized aromatic three-membered gold rings and their sandwichlike complexes. J Am Chem Soc 127:10623–10638CrossRefGoogle Scholar
  18. 18.
    Tsipis AC, Stalikas AV (2007) A new class of all-metal aromatic hydrido-bridged binary coinage metal heterocycles. A DFT study. New J Chem 31:852–859CrossRefGoogle Scholar
  19. 19.
    Chandrasekhar J, Jemmis ED, Schleyer PVR (1979) Double aromaticity: aromaticity in orthogonal planes. The 3,5-dehydrophenyl cation. Tetrahedron Lett 39:3707–3710CrossRefGoogle Scholar
  20. 20.
    Martin-Santamaria S, Rzepa HS (2000) Double aromaticity and anti-aromaticity in small carbon rings. Chem Commun 16:1503–1504CrossRefGoogle Scholar
  21. 21.
    Boldyrev AI, Wang LS (2005) All-metal aromaticity and antiaromaticity Chem Rev 105: 3716–3757Google Scholar
  22. 22.
    Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS, Steiner E, Fowler PW (2003) Structure and bonding in B6 and B6: planarity and antiaromaticity. J Phys Chem A 107:1359–1369CrossRefGoogle Scholar
  23. 23.
    Yong L, Chi XX (2007) Theoretical study on the aromaticity of dianions X3 2 − (X = Zn, Cd, Hg). J Mol Struct THEOCHEM 818:93–99CrossRefGoogle Scholar
  24. 24.
    Kuznetsov AE, Boldyrev AI (2004) A single π-bond captures 3, 4 and 5 atoms. Chem Phys Lett 388:452–456CrossRefGoogle Scholar
  25. 25.
    Chattaraj PK, Giri S (2008) Variation in aromaticity and bonding patterns in a reaction cycle involving Be3 2 − and Mg3 2 − dianions. J Mol Struct: THEOCHEM 865:53–56CrossRefGoogle Scholar
  26. 26.
    Roy DR, Chattaraj PK (2008) Reactivity, selectivity, and aromaticity of Be3 2 − and its complexes. J Phys Chem A 112:1612–1621CrossRefGoogle Scholar
  27. 27.
    Kuznetsov AE, Corbett JD, Wang LS, Boldyrev AI (2001) Aromatic mercury clusters in ancient amalgams. Angew Chem Int Ed 40:3369–3372CrossRefGoogle Scholar
  28. 28.
    Li X, Kuznetsov AE, Zhang HF, Boldyrev AI, Wang LS (2001) Observation of all-metal aromatic molecules. Science 291:859–861CrossRefGoogle Scholar
  29. 29.
    Huang X, Zhai HJ, Kiran B, Wang LS (2005) Observation of d-orbital aromaticity. Angew Chem Int Ed 44:7251–7254CrossRefGoogle Scholar
  30. 30.
    Chi XX, Liu Y (2007) Theoretical evidence of d-orbital aromaticity in anionic metal X3 (X = Sc, Y, La) clusters. Int J Quant Chem 107:1886–1896CrossRefGoogle Scholar
  31. 31.
    Wang B, Zhai HJ, Huang X, Wang LS (2008) On the electronic structure and chemical bonding in the tantalum trimer cluster. J Phys Chem A 112:10962–10967CrossRefGoogle Scholar
  32. 32.
    Alvarado-Soto L, Ramirez-Tagle R, Arratia-Perez R (2008) Spin–orbit effects on the aromaticity of the Re3Cl9 and Re3Br9 clusters Chem Phys Lett 467:94–96Google Scholar
  33. 33.
    Alvarado-Soto L, Ramirez-Tagle R, Arratia-Perez R (2009) Spin-orbit effects on the aromaticity of the Re3X9 2 − (X) Cl, Br) cluster ions. J Phys Chem A 113:1671–1673CrossRefGoogle Scholar
  34. 34.
    Thorn DL, Hoffmann R (1979) Delocalization in metallocycles. Nouv J Chim 3:39–45Google Scholar
  35. 35.
    Elliot GP, Roper WR, Waters JM (1982) Metallacyclohexatrienes or metallabenzenes. Synthesis of osmabenzene derivatives and X-ray crystal structure of [Os(CSCHCHCHCH)(CO)(PPh3)2]. J Chem Soc Chem Commun 811–813Google Scholar
  36. 36.
    Bleeke JR (2001) Metallabenzenes Chem Rev 101:1205–1228CrossRefGoogle Scholar
  37. 37.
    Wright LJ (2006) Metallabenzenes and metallabenzenoids Dalton Trans 1821–1827Google Scholar
  38. 38.
    Landorf WC, Haley MM (2006) Recent advances in metallabenzene chemistry. Angew Chem Int Ed 45:3914–3936CrossRefGoogle Scholar
  39. 39.
    Profilet RD, Fanwick PE, Rothwell IP (1992) 1,3-Dimetallabenzene derivatives of niobium or tantalum. Angew Chem Int Ed 31:1261–1263CrossRefGoogle Scholar
  40. 40.
    Fernandez I, Frenking G (2007) Aromaticity in metallabenzenes Chem Eur J 13:5873–5884CrossRefGoogle Scholar
  41. 41.
    Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS (2006) All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord Chem Rev 250:2811–2866CrossRefGoogle Scholar
  42. 42.
    Zubarev DY, Boldyrev AI (2007) Comprehensive analysis of chemical bonding in boron clusters. J Comput Chem 28:251–268CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alina P. Sergeeva
    • 1
  • Boris B. Averkiev
    • 1
  • Alexander I. Boldyrev
    • 1
  1. 1.Department of Chemistry and BiochemistryUtah State UniversityLoganUSA

Personalised recommendations