Advertisement

Max-margin Multiple-Instance Learning via Semidefinite Programming

  • Yuhong Guo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5828)

Abstract

In this paper, we present a novel semidefinite programming approach for multiple-instance learning. We first formulate the multiple-instance learning as a combinatorial maximum margin optimization problem with additional instance selection constraints within the framework of support vector machines. Although solving this primal problem requires non-convex programming, we nevertheless can then derive an equivalent dual formulation that can be relaxed into a novel convex semidefinite programming (SDP). The relaxed SDP has \(\mathcal{O}(T)\) free parameters where T is the number of instances, and can be solved using a standard interior-point method. Empirical study shows promising performance of the proposed SDP in comparison with the support vector machine approaches with heuristic optimization procedures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dietterich, T., Lathrop, R., Lozano-Perez, T.: Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence Journal 89 (1997)Google Scholar
  2. 2.
    Carson, C., Thomas, M., Belongie, S., Hellerstein, J., Malik, J.: Blobworld: A system for region-based image indexing and retrieval. In: Huijsmans, D.P., Smeulders, A.W.M. (eds.) VISUAL 1999. LNCS, vol. 1614, pp. 509–517. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Maron, O., Ratan, A.: Multiple-instance learning for natural scene classification. In: Proceedings of the International Conference on Machine Learning (1998)Google Scholar
  4. 4.
    Zhang, Q., Goldman, S., Yu, W., Fritts, J.: Content-based image retrieval using multiple-instance learning. In: Proceedings of the International Conference on Machine Learning (2002)Google Scholar
  5. 5.
    Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Advances in Neural Information Processing Systems (2002)Google Scholar
  6. 6.
    Zhang, Q., Goldman, S.: EM-dd: An improved multiple-instance learning technique. In: Advances in Neural Information Processing Systems (2001)Google Scholar
  7. 7.
    Gartner, T., Flach, P., Kowalczyk, A., Smola, A.: Multi-instance kernels. In: Proceedings of the International Conference on Machine Learning (2002)Google Scholar
  8. 8.
    Mangasarian, O., Wild, E.: Multiple instance classification via successive linear programming. Journal of Optimization Theory and Applications 137 (2008)Google Scholar
  9. 9.
    Zhou, Z., Zhang, M.: Ensembles of multi-instance learners. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 492–502. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Andrews, S., Hofmann, T.: Multiple instance learning via disjunctive programming boosting. In: Advances in Neural Information Processing Systems (2003)Google Scholar
  11. 11.
    Zhou, Z., Sun, Y., Li, Y.: Multiple-instance learning by training instances as non-i.i.d. samples. In: Proceedings of the International Conference on Machine Learning (2009)Google Scholar
  12. 12.
    Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L., Jordan, M.: Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research 5 (2004)Google Scholar
  13. 13.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge U. Press, Cambridge (2004)zbMATHGoogle Scholar
  14. 14.
    Xu, L., Neufeld, J., Larson, B., Schuurmans, D.: Maximum margin clustering. In: Advances in Neural Information Processing Systems (2004)Google Scholar
  15. 15.
    Sturm, J.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 11 (1999)Google Scholar
  16. 16.
    Lofberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yuhong Guo
    • 1
  1. 1.Department of Computer & Information SciencesTemple UniversityPhiladelphiaUSA

Personalised recommendations