Skip to main content

Multiple Classifiers for Different Features in Timbre Estimation

  • Chapter
Advances in Intelligent Information Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 265))

Abstract

Computer storage and network techniques have brought a tremendous need to find a way to automatically index digital music recordings. In this chapter, state of the art acoustic features for timbre automatic indexing are explored to construct efficient classification models, such as decision tree and KNN. The authors built a database containing more than one million music instrument sound slices, each described by a large number of features including standard MPEG7 audio descriptors, features for speech recognition, and many new audio features developed by the authors, spanning from temporal space to spectral domain. Each classification model was tuned with feature selection based on its distinct characteristics for the blind sound separation system. Based on the experimental results, authors proposed a new framework for MIR with multiple classifiers trained on different features. Inspired by the human recognition experience, timbre estimation based on the hierarchical structure of musical instrument families was investigated. A framework for timbre automatic indexing based on Cascade Classification System was proposed. The authors also discussed the issue of features and classifiers selection during the cascade classification process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A survery of music information fretirval systems, http://mirsystems.info

  2. Akinobu, L., et al.: Julius software toolkit, http://julius.sourceforge.jp/en/

  3. Brown, J.C.: Musical instrument identification using pattern recognition with cepstral coefficients as features. J. Acoust. Soc. of America. 105(3), 1933–1941 (1999)

    Article  Google Scholar 

  4. Brown, J.C., Houix, O., McAdams, S.: Feature dependence in the automatic identification of musical wind instruments. J. Acoust. Soc. of America. 109, 1064–1072 (2001)

    Article  Google Scholar 

  5. Bregman, A.S.: Auditory scene analysis, the perceptual organization of sound. MIT Press, Cambridge (1990)

    Google Scholar 

  6. Cosi, P.: Auditory Modeling and Neural Networks. In: ICANN 1998. LNCS, Springer, Heidelberg (1998)

    Google Scholar 

  7. Cutting, D., Kupiec, J., Pedersen, J., Sibun, P.: A Practical Part-of-Speech Tagger. In: The Third Conference on Applied Natural Language Processing, pp. 133–140 (1992)

    Google Scholar 

  8. Czyzewski, A.: Soft processing of audio signals. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, pp. 147–165. Physica Verlag, Heidelberg

    Google Scholar 

  9. Kaminskyj, I.: Multi-feature Musical Instrument Sound Classifier. Mikropolyphonie WWW Journal (6) (2001), http://farben.latrobe.edu.au/mikropol/articles.html

  10. Kostek, B.: Soft computing-based recognition of musical sounds. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  11. Kupiec, J.: Robust Part-of-Speech Tagging Using a Hidden Markov Model. The Computer Speech and Language 6, 225–242 (1992)

    Article  Google Scholar 

  12. Kostek, B., Czyzewski, A.: Representing Musical Instrument Sounds for Their Automatic Classification. J. Audio Eng. Soc. 49(9), 768–785 (2001)

    Google Scholar 

  13. Herrera, P., Amatriain, X., Batlle, E., Serra, X.: Towards instrument segmentation for music content description: a critical review of instrument classification techniques. In: The international Symposium on Music Information Retrieval (ISMIR 2000), Plymouth, MA (2000)

    Google Scholar 

  14. Jensen, K., Arnspang, J.: Binary decision tree classification of musical sounds. In: The 1999 International Computer Music Conference, Beijing, China (1999)

    Google Scholar 

  15. Lindsay, A.T., Herre, J.: MPEG-7 and MPEG-7 Audio-An Overview. J. Audio Eng. Soc. 49, 589–594 (2001)

    Google Scholar 

  16. Logan, B.: Frequency Cepstral Coefficients for Music Modeling. In: 1st Ann. Int. Symposium On Music Information Retrieval (2000)

    Google Scholar 

  17. Martin, K.D.: Sound-Source Recognition: A Theory and Computational Model., Ph.D. Thesis, MIT, Cambridge, MA (1999)

    Google Scholar 

  18. Martin, K.D., Kim, Y.E.: Musical Instrument Identification: A Pattern-Recognition Approach. In: 136th Meeting of the Acoustical Soc. of America, Norfolk, VA 2pMU9 (1998)

    Google Scholar 

  19. Paulus, J., Virtanen, T.: Drum transcription with non-negative spectrogram factorization. In: 13th European Signal Processing Conference, Antalya, Turkey, pp. 4–8 (2005)

    Google Scholar 

  20. Polkowski, L., Skowron, A.: Rough Sets in Knowledge Discovery. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  21. Press, W.H., Teukolsky, S.A.: Numerical Recipes in C, 2nd edn., Cambridge (1992)

    Google Scholar 

  22. Ras, Z., Wieczorkowska, A.: Indexing audio databases with musical information. In: SCI 2001, Orlando, Florida, vol. 10, pp. 279–285 (2001)

    Google Scholar 

  23. Scheirer, E., Slaney, M.: Construction and Evaluation of a Robust Multi-feature Speech/Music Discriminator. In: IEEE int. Conf. on Acoustics, Speech and Signal Processing, vol. 10, pp. 279–285 (1997)

    Google Scholar 

  24. Tzanetakis, G., Cook, P.: Musical Genre Classification of Audio Signals. IEEE Trans. Speech and Audio Processing 10, 293–302 (1997)

    Article  Google Scholar 

  25. Wieczorkowska, A.: Classification of musical instrument sounds using decision trees. In: The 8th International Symposium on Sound Engineering and Mastering, pp. 225–230 (1999)

    Google Scholar 

  26. Wieczorkowska, A., Ras, Z.: Audio content description in sound database. In: Zhong, N., Yao, Y., Ohsuga, S., Liu, J. (eds.) WI 2001. LNCS (LNAI), vol. 2198, pp. 175–183. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  27. Wold, E., Blum, T., Keislar, D., Wheaton, J.: Content-Based Classification, Search and Retrieval of Audio. IEEE Multimedia, 27–36 (1996)

    Google Scholar 

  28. Freund, Y.: Boosting a weak learning algorithm by majority. In: The 3rd Annual Workshop on Computational Learning Theory (1990)

    Google Scholar 

  29. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Young, S.J., Russell, N.H., Thornton, J.H.: Token passing: asimple conceptual model for connected speech recognition systems. Technical Report CUED/F-INFENG/TR38, Cambridge University Engineering Department, Cambridge, UK (1989)

    Google Scholar 

  31. Zhang, X., Marasek, K., Ras, Z.W.: Maximum Likelihood Study for Sound Pattern Separation and Recognition. In: IEEE CS International Conference on Multimedia and Ubiquitous Engineering, Seoul, Korea, pp. 807–812 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jiang, W., Zhang, X., Cohen, A., Raś, Z.W. (2010). Multiple Classifiers for Different Features in Timbre Estimation. In: Ras, Z.W., Tsay, LS. (eds) Advances in Intelligent Information Systems. Studies in Computational Intelligence, vol 265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05183-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05183-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05182-1

  • Online ISBN: 978-3-642-05183-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics