Skip to main content

Transductive Learning for Spatial Data Classification

  • Chapter
Advances in Machine Learning I

Part of the book series: Studies in Computational Intelligence ((SCI,volume 262))

Abstract

Learning classifiers of spatial data presents several issues, such as the heterogeneity of spatial objects, the implicit definition of spatial relationships among objects, the spatial autocorrelation and the abundance of unlabelled data which potentially convey a large amount of information. The first three issues are due to the inherent structure of spatial units of analysis, which can be easily accommodated if a (multi-)relational data mining approach is considered. The fourth issue demands for the adoption of a transductive setting, which aims to make predictions for a given set of unlabelled data. Transduction is also motivated by the contiguity of the concept of positive autocorrelation, which typically affect spatial phenomena, with the smoothness assumption which characterize the transductive setting. In this work, we investigate a relational approach to spatial classification in a transductive setting. Computational solutions to the main difficulties met in this approach are presented. In particular, a relational upgrade of the naïve Bayes classifier is proposed as discriminative model, an iterative algorithm is designed for the transductive classification of unlabelled data, and a distance measure between relational descriptions of spatial objects is defined in order to determine the k-nearest neighbors of each example in the dataset. Computational solutions have been tested on two real-world spatial datasets. The transformation of spatial data into a multi-relational representation and experimental results are reported and commented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appice, A., Ceci, M., Lanza, A., Lisi, F.A., Malerba, D.: Discovery of spatial association rules in georeferenced census data: A relational mining approach. Intelligent Data Analysis 7(6), 541–566 (2003)

    Google Scholar 

  2. Bennett, K.P.: Combining support vector and mathematical programming methods for classification. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in kernel methods: support vector learning, pp. 307–326. MIT Press, Cambridge (1999)

    Google Scholar 

  3. Ceci, M., Appice, A.: Spatial associative classification: propositional vs. structural approach. Journal of Intelligent Information Systems 27(3), 191–213 (2006)

    Article  Google Scholar 

  4. Ceci, M., Appice, A., Malerba, D.: Mr-SBC: A multi-relational naïve bayes classifier. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 95–106. Springer, Heidelberg (2003)

    Google Scholar 

  5. Ceci, M., Appice, A., Malerba, D.: Discovering emerging patterns in spatial databases: A multi-relational approach. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 390–397. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-supervised learning. MIT Press, Cambridge (2006)

    Google Scholar 

  7. Chen, Y., Wang, G., Dong, S.: Learning with progressive transductive support vector machines. Pattern Recognition Letters 24, 1845–1855 (2003)

    Article  Google Scholar 

  8. De Raedt, L.: Interactive theory revision. Academic Press, London (1992)

    Google Scholar 

  9. De Raedt, L.: Attribute-value learning versus inductive logic programming: the missing links. In: Page, D.L. (ed.) ILP 1998. LNCS, vol. 1446, pp. 1–8. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Džeroski, L., Lavrač, N.: Relational data mining. Springer, Berlin (2001)

    MATH  Google Scholar 

  11. Egenhofer, M.J., Franzosa, R.: Point-set topological spatial relations. International Journal of Geographical Information Systems 5(2), 161–174 (1991)

    Article  Google Scholar 

  12. Esposito, F., Malerba, D., Tamma, V., Bock, H.: Similarity and dissimilarity. In: Bock, H.H., Diday, E. (eds.) Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data, pp. 139–152. Springer, Heidelberg (2000)

    Google Scholar 

  13. Ester, M., Gundlach, S., Kriegel, H., Sander, J.: Database primitives for spatial data mining. In: Proceedings of the International Conference on Database in Office, Engineering and Science, BTW 1999, Freiburg, Germany (1999)

    Google Scholar 

  14. Ester, M., Kriegel, H., Sander, J.: Spatial data mining: A database approach. In: Scholl, M.O., Voisard, A. (eds.) SSD 1997. LNCS, vol. 1262, pp. 47–66. Springer, Heidelberg (1997)

    Google Scholar 

  15. Frank, A.: Spatial concepts, geometric data models, and geometric data structures. Computers and Geosciences 18(4), 409–417 (1992)

    Article  Google Scholar 

  16. Gammerman, A., Azoury, K., Vapnik, V.: Learning by transduction. In: Proc. of the 14th Annual Conference on Uncertainty in Artificial Intelligence, UAI 1998, pp. 148–155. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  17. Getoor, L.: Multi-relational data mining using probabilistic relational models: research summary. In: Knobbe, A., Van der Wallen, D.M.G. (eds.) Proceedings of the 1st Workshop on Multi-Relational Data Mining, Freiburg, Germany (2001)

    Google Scholar 

  18. Góra, G., Wojna, A.: RIONA: A classifier combining rule induction and k-NN method with automated selection of optimal neighbourhood. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 111–123. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Han, J., Kamber, M., Tung, A.K.H.: Spatial clustering methods in data mining. In: Han, J., Kamber, M. (eds.) Geographic Data Mining and Knowledge Discovery, pp. 188–217. Taylor and Francis, Abington (2001)

    Google Scholar 

  20. Joachims, T.: Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning (ICML 1999), pp. 200–209. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  21. Joachims, T.: Transductive learning via spectral graph partitioning. In: Proc. of the 20th International Conference on Machine Learning, ICML 2003. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  22. Klösgen, W., May, M.: Spatial subgroup mining integrated in an object-relational spatial database. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 275–286. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. Koperski, K.: Progressive Refinement Approach to Spatial Data Mining. PhD thesis, Computing Science, Simon Fraser University, British Columbia, Canada (1999)

    Google Scholar 

  24. Koperski, K., Han, J.: Discovery of spatial association rules in geographic information databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 47–66. Springer, Heidelberg (1995)

    Google Scholar 

  25. Krogel, M., Rawles, S., Zelezny, F., Flach, P., Lavrac, N., Wrobel, S.: Comparative evaluation of approaches to propositionalization. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 197–214. Springer, Heidelberg (2003)

    Google Scholar 

  26. Krogel, M.-A., Scheffer, T.: Multi-relational learning, text mining, and semi-supervised learning for functional genomics. Machine Learning 57(1-2), 61–81 (2004)

    Article  MATH  Google Scholar 

  27. Kukar, M., Kononenko, I.: Reliable classifications with machine learning. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 219–231. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  28. Lavrač, N., Džeroski, S.: Inductive logic programming: techniques and applications. Ellis Horwood, Chichester (1994)

    MATH  Google Scholar 

  29. Legendre, P.: Spatial autocorrelation: Trouble or new paradigm. Ecology 74, 1659–1673 (1993)

    Article  Google Scholar 

  30. Malerba, D.: Learning recursive theories in the normal ILP setting. Fundamenta Informaticae 57(1), 39–77 (2003)

    MATH  MathSciNet  Google Scholar 

  31. Malerba, D., Appice, A., Ceci, M.: A data mining query language for knowledge discovery in a geographical information system. In: Meo, R., Lanzi, P.L., Klemettinen, M. (eds.) Database Support for Data Mining Applications. LNCS (LNAI), vol. 2682, pp. 95–116. Springer, Heidelberg (2004)

    Google Scholar 

  32. Malerba, D., Ceci, M., Appice, A.: Mining model trees from spatial data. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 169–180. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  33. Malerba, D., Esposito, F., Lanza, A., Lisi, F.A., Appice, A.: Empowering a GIS with inductive learning capabilities: The case of INGENS. Journal of Computers, Environment and Urban Systems 27, 265–281 (2003)

    Article  Google Scholar 

  34. McIver, D., Friedl, M.: Estimating pixel-scale land cover classification confidence using nonparametric machine learning methods. IEEE Transactions on Geoscience and Remote Sensing 39(9), 1959–1968 (2001)

    Article  Google Scholar 

  35. Michalski, R.S.: A theory and methodology of inductive learning. Artificial Intelligence 20(2), 111–161 (1983)

    Article  MathSciNet  Google Scholar 

  36. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  37. Muggleton, S.: Inductive logic programming. Academic Press, London (1992)

    MATH  Google Scholar 

  38. Mukerjee, A., Joe, G.: A qualitative model for space. In: Proceedings of AAAI 1990, pp. 721–727. AAAI Press, Menlo Park (1990)

    Google Scholar 

  39. Robinson, J.A.: A machine oriented logic based on the resolution principle. Journal of the ACM 12, 23–41 (1965)

    Article  MATH  Google Scholar 

  40. Sander, J., Ester, M., Kriegel, H., Xu, X.: Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data Mining and Knowledge Discovery 2(2), 169–194 (1998)

    Article  Google Scholar 

  41. Seeger, M.: Learning with labeled and unlabeled data. Technical report, University of Edinburgh (2001)

    Google Scholar 

  42. Shekhar, S., Schrater, P.R., Vatsavai, R.R., Wu, W., Chawla, S.: Spatial contextual classification and prediction models for mining geospatial data. IEEE Transactions on Multimedia 4(2), 174–188 (2002)

    Article  Google Scholar 

  43. Shekhar, S., Vatsavai, R., Chawla, S.: Spatial classification and prediction models for geospatial data mining. In: Miller, H.J., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery, 2nd edn., pp. 117–147. Taylor & Francis, Abington (2009)

    Google Scholar 

  44. Shekhar, S., Zhang, P., Huang, Y.: Spatial data mining. In: Maimon, O., Rokach, L. (eds.) The Data Mining and Knowledge Discovery Handbook, pp. 833–851. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  45. Taskar, B., Segal, E., Koller, D.: Probabilistic classification and clustering in relational data. In: Nebel, B. (ed.) Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 870–878 (2001)

    Google Scholar 

  46. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  47. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  48. Wessel, M.: Some practical issues in building a hybrid deductive geographic information system with a dl component. In: Proceedings of the 10th International Workshop on Knowledge Representation meets Databases (KRDB 2003), Hamburg, Germany, September 15-16. CEUR Workshop Proceedings, vol. 79. CEUR-WS.org (2003)

    Google Scholar 

  49. Wettschereck, D.: A study of Distance-Based Machine Learning Algorithms. PhD thesis, Oregon State University (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ceci, M., Appice, A., Malerba, D. (2010). Transductive Learning for Spatial Data Classification. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds) Advances in Machine Learning I. Studies in Computational Intelligence, vol 262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05177-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05177-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05176-0

  • Online ISBN: 978-3-642-05177-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics