Skip to main content

An Analysis of the FURIA Algorithm for Fuzzy Rule Induction

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 262))

Abstract

This paper elaborates on a novel fuzzy rule-based classification method called FURIA, which is short for “Fuzzy Unordered Rule Induction Algorithm”. FURIA has recently been developed as an extension of the well-known RIPPER algorithm. It learns fuzzy rules instead of conventional rules and unordered rule sets instead of rule lists. Moreover, to deal with uncovered examples, it makes use of an efficient rule stretching method. First experimental results have shown that FURIA significantly outperforms the original RIPPER in terms of classification accuracy. Elaborating on the advantages of a fuzzy approach, this paper makes an attempt to distill and quantify the influence of rule fuzzification on the performance of the algorithm. Moreover, going beyond the conventional classification problem, we investigate the performance of FURIA in the context of bipartite ranking, in which a fuzzy approach appears to be even more appealing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcalá-Fernandez, J., Sánchez, L., García, S., del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., Fernández, J.C., Herrera, F.: KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Computing 13(3), 307–318 (2009)

    Article  Google Scholar 

  2. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007), http://archive.ics.uci.edu/ml/index.html (Obtained on 22nd of August 2007)

  3. Barker, D.: Dataset: Pasture production (2007), http://weka.sourceforge.net/wiki/index.php/Datasets (Obtained on 20th of October 2007)

  4. Boström, H.: Pruning and exclusion criteria for unordered incremental reduced error pruning. In: Proceedings of the Workshop on Advances in Rule Learning, ECML, pp. 17–29 (2004)

    Google Scholar 

  5. Bulloch, B.: Dataset: Eucalyptus soil conservation (2007), http://weka.sourceforge.net/wiki/index.php/Datasets (Obtained on 20th of October 2007)

  6. Cohen, W.W.: Fast effective rule induction. In: Prieditis, A., Russell, S. (eds.) Proceedings of the 12th International Conference on Machine Learning, ICML, Tahoe City, CA, USA, July 9-12, pp. 115–123. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  7. Cloete, I., van Zyl, J.: Fuzzy rule induction in a set covering framework. IEEE Transactions on Fuzzy Systems 14(1), 93–110 (2006)

    Article  Google Scholar 

  8. Chi, Z., Wu, J., Yan, H.: Handwritten numeral recognition using self-organizing maps and fuzzy rules. Pattern Recognition 28(1), 59–66 (1995)

    Article  Google Scholar 

  9. Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition. World Scientific Publishing Co., Inc., River Edge (1996)

    MATH  Google Scholar 

  10. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    Google Scholar 

  11. Dunn, O.J.: Multiple comparisons among means. Journal of the American Statistical Association 56, 52–64 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fernández, A., García, S., Herrera, F., del Jesús, M.J.: An analysis of the rule weights and fuzzy reasoning methods for linguistic rule based classification systems applied to problems with highly imbalanced data sets. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578, pp. 170–178. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association 32(200), 675–701 (1937)

    Article  Google Scholar 

  14. Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. The Annals of Mathematical Statistics 11(1), 86–92 (1940)

    Article  MATH  Google Scholar 

  15. Fürnkranz, J.: Separate-and-Conquer rule learning. Artificial Intelligence Review 13(1), 3–54 (1999)

    Article  MATH  Google Scholar 

  16. Fürnkranz, J., Widmer, G.: Incremental reduced error pruning. In: Cohen, W.W., Hirsh, H. (eds.) Proceedings of the 11th International Conference on Machine Learning, ICML, New Brunswick, NJ, USA, pp. 70–77. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  17. González, A., Perez, R.: Slave: a genetic learning system based on an iterative approach. IEEE Transactions on Fuzzy Systems 7(2), 176–191 (1999)

    Article  Google Scholar 

  18. González, A., Perez, R.: Selection of relevant features in a fuzzy genetic learning algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B 31(3), 417–425 (2001)

    Article  Google Scholar 

  19. Harvey, W.: Dataset: Squash harvest stored / unstored (2007), http://weka.sourceforge.net/wiki/index.php/Datasets (Obtained on 20th of October 2007)

  20. Hühn, J.C., Hüllermeier, E.: Furia: an algorithm for unordered fuzzy rule induction. In: Data Mining and Knowledge Discovery (2009)

    Google Scholar 

  21. Hüllermeier, E.: Fuzzy sets in machine learning and data mining: Status and prospects. Fuzzy Sets and Systems 156(3), 387–406 (2005)

    Article  MathSciNet  Google Scholar 

  22. Hüllermeier, E., Vanderlooy, S.: Why fuzzy decision trees are good rankers. IEEE Transactions on Fuzzy Systems (2009)

    Google Scholar 

  23. Ishibuchi, H., Nakashima, T.: Effect of rule weights in fuzzy rule-based classification systems. IEEE Transactions on Fuzzy Systems 9(4), 506–515 (2001)

    Article  Google Scholar 

  24. Ishibuchi, H., Yamamoto, T.: Rule weight specification in fuzzy rule-based classification systems. IEEE Transactions on Fuzzy Systems 13(4), 428–436 (2005)

    Article  Google Scholar 

  25. Juang, C., Chiu, S., Chang, S.: A self-organizing TS-Type fuzzy network with support vector learning and its application to classification problems. IEEE Transactions on Fuzzy Systems 15(5), 998–1008 (2007)

    Article  Google Scholar 

  26. Kuwajima, I., Nojima, Y., Ishibuchi, H.: Effects of constructing fuzzy discretization from crisp discretization for rule-based classifiers. Artificial Life and Robotics 13(1), 294–297 (2008)

    Article  Google Scholar 

  27. Meyer, M., Vlachos, P.: Statlib (2007), http://lib.stat.cmu.edu/

  28. Provost, F., Domingos, P.: Tree induction for probability-based ranking. Machine Learning 52(3), 199–215 (2003)

    Article  MATH  Google Scholar 

  29. Provost, F.J., Fawcett, T.: Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. In: Heckerman, D., Mannila, H., Pregibon, D. (eds.) Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, KDD, Newport Beach, CA, USA, pp. 43–48. AAAI Press, Menlo Park (1997)

    Google Scholar 

  30. Provost, F.J., Fawcett, T., Kohavi, R.: The case against accuracy estimation for comparing induction algorithms. In: Shavlik, J.W. (ed.) Proceedings of the Fifteenth International Conference on Machine Learning, ICML, Madison, WI, USA, pp. 445–453. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  31. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  32. Quinlan, J.R., Cameron-Jones, R.M.: FOIL: A midterm report. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 3–20. Springer, Heidelberg (1993)

    Google Scholar 

  33. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5(3), 239–266 (1990)

    Google Scholar 

  34. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  35. Quinlan, J.R.: MDL and categorial theories (continued). In: Prieditis, A., Russell, S.J. (eds.) Proceedings of the 12th International Conference on Machine Learning, ICML, Lake Tahoe, CA, USA, pp. 464–470. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hühn, J.C., Hüllermeier, E. (2010). An Analysis of the FURIA Algorithm for Fuzzy Rule Induction. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds) Advances in Machine Learning I. Studies in Computational Intelligence, vol 262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05177-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05177-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05176-0

  • Online ISBN: 978-3-642-05177-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics