Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 55))

  • 1925 Accesses

Abstract

Nowadays endoscopic analysis is limited to a direct and qualitative view of internal anatomy. On the other hand, the measurement of the actual size of anatomical objects could be a powerful instrument both in research and in clinical survey. For instance, an important application could be monitoring lesion size, both during diagnosis and in follow-up. The foremost obstacle to quantitative imaging is the incapability of measuring the distance between the endoscopic probe and the anatomical object under examination, since the dimension of the object in the image depends on that distance. This problem has not been solved yet in a satisfactory way.

In this Chapter we describe our work to address this problem by means of an optical measurement of the distance between the endoscope distal tip and the anatomical wall. We make use of Fiber Optics Low Coherence Interferometry to realize an absolute distance sensor compatible with endoscope technology. The result is a system integrating a clinical endoscope and an optical distance sensor, equipped with a software that allows an user to acquire an endoscopic image, select a region of interest, and obtain its quantitative measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meyers, R.A.: Encyclopedia of lasers and optical technology. Academic Press, San Diego (1991)

    Google Scholar 

  2. Vitale, G.C., Davis, B.R., Tran, T.C.: The advancing art and science of endoscopy. The American Journal of Surgery 190, 228–233 (2005)

    Article  Google Scholar 

  3. Masters, I.B., Eastburn, M.M., Wootton, R., Ware, R.S., Francis, P.W., Zimmerman, P.V., Chang, A.B.: A new method for objective identification and measurement of airway lumen in paediatric flexible videobronchoscopy. Thorax 60, 652–658 (2005)

    Article  Google Scholar 

  4. Dörffel, W.V., Fietze, I., Hentschel, D., Liebetruth, J., Rückert, Y., Rogalla, P., Wernecke, K.D., Baumann, G., Witt, C.: A new bronchoscopic method to measure airway size. European Respiratory Journal 14, 783–788 (1999)

    Article  Google Scholar 

  5. McFawn, P.K., Forkert, L., Fisher, J.T.: A new method to perform quantitative measurement of brobchoscopic images. European Respiratory Journal 18, 817–826 (2001)

    Article  Google Scholar 

  6. Rosen, D., Minhaj, A., Hinds, M., Kobler, J., Hillman, R.: Calibrated Sizing System for Flexible Laryngeal Endoscopy. In: 6th International Workshop: Advances in Quantitative Laryngology, pp. 1–8 (2003)

    Google Scholar 

  7. Santos, M.C., Strande, L., Doolin, E.J.: Airway measurement using morphometric analysis. Annals of Otology, Rhinology & Laryngology 104, 835–838 (1995)

    Google Scholar 

  8. Truitt, T.O., Adelman, R.A., Kelly, D.H., Willging, J.P.: Quantitative endoscopy: Initial accuracy measurements. Annals of Otology, Rhinology & Laryngology 109, 128–132 (2000)

    Google Scholar 

  9. Amann, M.C., Bosch, T., Lescure, M., Myllylä, R., Roux, M.: Laser ranging: a critical review of usual techniques for distance measurement. Optical Engineering 40, 10–19 (2001)

    Article  Google Scholar 

  10. Danielson, B.L., Boisrobert, C.Y.: Absolute optical ranging using low coherence interferometry. Applied Optics 30, 2975–2979 (1991)

    Article  Google Scholar 

  11. Schmitt, J.M.: Optical Coherence Tomography (OCT): A Review. IEEE Journal of Selected Topics in Quantum Electronics 3, 1205–1215 (1999)

    Article  Google Scholar 

  12. Flavin, D.A., McBride, R., Jones, J.D.C.: Interferometric Fiber Optic Sensing Based on the Modulation of Group Delay and First Order Dispersion: Application to Strain- Temperature Measurand. Journal of Lightwave Technology 13, 1314–1323 (1995)

    Article  Google Scholar 

  13. Loret, S.L., Inaudi, D.: Amplitude modulation of a low-coherence source, applications to distance and dynamic displacement sensing. Optics and Lasers in Engineering 32, 325–337 (2000)

    Article  Google Scholar 

  14. Saleh, B.E.A., Teich, M.C.: Fundamental of Photonics. John Wiley & Sons, Chichester (1991)

    Book  Google Scholar 

  15. Cheong, W.F., Prahl, S.A., Welch, A.J.: A review of the optical properties of biological tissues. IEEE Journal of Quantum Electronics 26, 2166–2185 (1990)

    Article  Google Scholar 

  16. Bouma, B.E., Tearney, G.J.: Handbook of Optical Coherence Tomography. Marcel Dekker, New York (2002)

    Google Scholar 

  17. Dufour, M.L., Lamouche, G., Detalle, V., Gauthier, B., Sammut, P.: Low-coherence interferometry, an advanced technique for optical metrology in industry. Industrial Materials Institute, National Research Council, Boucherville, Quebec, Canada

    Google Scholar 

  18. Rao, Y.J., Jackson, D.A.: Recent progress in fiber optic low-coherence interferometry. Measurement Science And Technology 7, 981–999 (1996)

    Article  Google Scholar 

  19. Song, G., Wang, X., Qian, F., Fang, Z.: The determination of the zero-order interferometric region and its central fringe in white-light interferometry. Optik 112, 26–30 (2001)

    Google Scholar 

  20. Wang, D.N., Shu, C.: Discrete fringe pattern to reduce the resolution limit for white light interferometry. Optics Communication 162, 187–190 (1999)

    Article  Google Scholar 

  21. Bracewell, R.N.: The Fourier Transform and its Applications, 3rd edn. McGraw-Hill, Boston (2000)

    Google Scholar 

  22. Lucesoli, A., Criante, L., Farabollini, B., Bonifazi, F., Simoni, F., Rozzi, T.: Distance optical sensor for quantitative endoscopy. Journal of Biomedical Optics 13(1), 010504/3 (2008)

    Google Scholar 

  23. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-time signal processing. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  24. Criante, L., Lucesoli, A., Farabollini, B., Bonifazi, F., Rozzi, T., Simoni, F.: Size measurement in endoscopic images by low coherence interferometry. Journal of Optics A, Pure and Applied Optics 11, 034007(7 p.) (2009)

    Google Scholar 

  25. Lucesoli, A., Criante, L., Farabollini, B., Bonifazi, F., Simoni, F., Di Donato, A., Rozzi, T.: Quantitative Endoscopy by FOLCI-Based Distance Sensor. In: IEEE Sensors 2008, Lecce, Italy, October 26-29, pp. 870–873 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lucesoli, A., Criante, L., Di Donato, A., Vita, F., Simoni, F., Rozzi, T. (2010). Optical Ranging in Endoscopy: Towards Quantitative Imaging. In: Mukhopadhyay, S.C., Lay-Ekuakille, A. (eds) Advances in Biomedical Sensing, Measurements, Instrumentation and Systems. Lecture Notes in Electrical Engineering, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05167-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05167-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05166-1

  • Online ISBN: 978-3-642-05167-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics