Skip to main content

Exact FRG Flow Equations

  • Chapter
  • First Online:
Introduction to the Functional Renormalization Group

Part of the book series: Lecture Notes in Physics ((LNP,volume 798))

  • 4338 Accesses

Abstract

We are now ready to derive FRG flow equations describing the mode-elimination step of the Wilsonian RG exactly. Let us therefore introduce a cutoff Λ into the matrix-propagator G 0 appearing in the Gaussian part S 0 [Φ] of our initial action given in Eq. (6.3). The cutoff scale Λ defines the boundary between long-wavelength (or low energy) fluctuations and short-wavelength (or high energy) fluctuations. The cutoff should be introduced in such a way that fluctuations with wave vectors (or energies) below the cutoff scale are suppressed, while the short-wavelength, high-energy fluctuations are not modified. There is considerable freedom in the implementation of the cutoff procedure, as will be discussed in Sect. 7.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baier, T., E. Bick, and C. Wetterich (2004), Temperature dependence of antiferromagnetic order in the Hubbard model, Phys. Rev. B 70, 125111.

    Article  ADS  Google Scholar 

  • Berges, J., N. Tetradis, and C. Wetterich (2002), Non-perturbative renormalization flow in quantum field theory and statistical physics, Phys. Rep. 363, 223.

    MATH  MathSciNet  ADS  Google Scholar 

  • Bonini, M., M. D’Attanasio, and G. Marchesini (1993), Perturbative renormalization and infrared finiteness in the Wilson renormalization group: The massless scalar case, Nucl. Phys. B 409, 441.

    Article  ADS  Google Scholar 

  • Efetov, K. (1997), Supersymmetry in Disorder and Chaos, Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  • Efetov, K. B. (1983), Supersymmetry and theory of disordered metals, Adv. Phys. 32, 53.

    Article  MathSciNet  ADS  Google Scholar 

  • Fisher, M. E. (1983), Scaling, Universality and Renormalization Group Theory, in F. J. W. Hahne, editor, Lecture Notes in Physics, volume 186, Springer, Berlin.

    Google Scholar 

  • Halboth, C. J. and W. Metzner (2000), Renormalization group analysis of the two-dimensional Hubbard model, Phys. Rev. B 61, 7364.

    Article  ADS  Google Scholar 

  • Hasselmann, N., S. Ledowski, and P. Kopietz (2004), Critical behavior of weakly interacting bosons: A functional renormalization-group approach, Phys. Rev. A 70, 063621.

    Article  ADS  Google Scholar 

  • Honerkamp, C. and M. Salmhofer (2001), Temperature-flow renormalization group and the competition between superconductivity and ferromagnetism, Phys. Rev. B 64, 184516.

    Article  ADS  Google Scholar 

  • Honerkamp, C., D. Rohe, S. Andergassen, and T. Enss (2004), Interaction flow method for many-fermion systems, Phys. Rev. B 70, 235115.

    Article  ADS  Google Scholar 

  • Keller, G. and C. Kopper (1991), Perturbative renormalization of QED via flow equations, Phys. Lett. B 273, 323.

    Article  MathSciNet  ADS  Google Scholar 

  • Keller, G. and C. Kopper (1996), Renormalizability proof for QED based on flow equations, Commun. Math. Phys. 176, 193.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Keller, G., C. Kopper, and M. Salmhofer (1992), Perturbative renormalization and effective Lagrangians in \(\Phi_4^4\), Helv. Phys. Acta 65, 32.

    MathSciNet  Google Scholar 

  • Litim, D. F. (2001), Optimized renormalization group flows, Phys. Rev. D 64, 105007.

    Article  ADS  Google Scholar 

  • Meden, V. (2003), Lecture notes on theFunctional Renormalization Group”, http://web.physik.rwth-aachen.de/∼meden/funRG/.

  • Morris, T. R. (1994), The Exact Renormalisation Group and Approximate Solutions, Int. J. Mod. Phys. A 9, 2411.

    Article  MATH  ADS  Google Scholar 

  • Nicoll, J. F. and T. S. Chang (1977), An exact one-particle-irreducible renormalization-group generator for critical phenomena, Phys. Lett. A 62, 287.

    Article  MathSciNet  ADS  Google Scholar 

  • Nicoll, J. F., T. S. Chang, and H. E. Stanley (1974), Approximate Renormalization Group Based on the Wegner-Houghton Differential Generator, Phys. Rev. Lett. 33, 540.

    Article  MathSciNet  ADS  Google Scholar 

  • Polchinski, J. (1984), Renormalization and effective lagrangians, Nucl. Phys. B 231, 269.

    Article  ADS  Google Scholar 

  • Rosten, O. J. (2009), Triviality from the exact renormalization group, J. High Energy Phys. 07, 019.

    Article  MathSciNet  ADS  Google Scholar 

  • Salmhofer, M. (1998), Continuous renormalization for fermions and Fermi liquid theory, Comm. Math. Phys. 194, 249.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Salmhofer, M. (1999), Renormalization: An Introduction, Springer, Berlin.

    MATH  Google Scholar 

  • Sauli, F. and P. Kopietz (2006), Low-density expansion for the twodimensional electron gas, Phys. Rev. B 74, 193106.

    Article  ADS  Google Scholar 

  • Schönhammer, K. (2000), private communication.

    Google Scholar 

  • Schütz, F. and P. Kopietz (2006), Functional renormalization group with vacuum expectation values and spontaneous symmetry breaking, J. Phys. A: Math. Gen. 39, 8205.

    Article  MATH  ADS  Google Scholar 

  • Schütz, F., L. Bartosch, and P. Kopietz (2005), Collective fields in the functional renormalization group for fermions, Ward identities, and the exact solution of the Tomonaga-Luttinger model, Phys. Rev. B 72, 035107.

    Article  ADS  Google Scholar 

  • Sinner, A., N. Hasselmann, and P. Kopietz (2008), Functional renormalization group in the broken symmetry phase: momentum dependence and twoparameter scaling of the self-energy, J. Phys.: Condens. Matter 20, 075208.

    Article  ADS  Google Scholar 

  • Weinberg, S. (1976), Critical Phenomena for Field Theorists, in A. Zichichi, editor, Proc. Int. School of Subnuclear Physics 1, Erice, Plenum, New York.

    Google Scholar 

  • Wetterich, C. (1993), Exact evolution equation for the effective potential, Phys. Lett. B 301, 90.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kopietz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kopietz, P., Bartosch, L., Schütz, F. (2010). Exact FRG Flow Equations. In: Introduction to the Functional Renormalization Group. Lecture Notes in Physics, vol 798. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05094-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05094-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05093-0

  • Online ISBN: 978-3-642-05094-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics