Skip to main content

Superfluid Fermions: Partial Bosonization in the Particle–Particle Channel

  • Chapter
  • First Online:
Introduction to the Functional Renormalization Group

Part of the book series: Lecture Notes in Physics ((LNP,volume 798))

  • 4279 Accesses

Abstract

While the decoupling of the fermionic two-body interaction in the forward scattering channel described in Chap. 11 is natural if the interaction involves only small momentum transfers, such a procedure is not appropriate for other types of interactions. For example, the superconducting instability of a normal metal is triggered by particle–particle scattering processes with vanishing total momentum, so that in this case a Hubbard–Stratonovich decoupling in the particle–particle channel is more natural. Of course, if the resulting mixed Bose–Fermi theory could be solved exactly, then the choice of the Hubbard–Stratonovich field should not matter. However, in practice one has to rely on approximations, so that it is important to introduce the physically relevant collective degrees of freedom from the beginning by means of a proper choice of the Hubbard–Stratonovich field. In fact, it is a priori not clear whether the physical properties of a given system can be simply described by means of a decoupling involving only a single Hubbard–Stratonovich field (Bartosch et al. 2009a). We shall further comment on multicomponent Hubbard–Stratonovich transformations in Sect. 12.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M. and I. A. Stegun (1965), Handbook of Mathematical Functions, Dover, New York.

    Google Scholar 

  • Anderson, P. W. (1958), Coherent excited states in the theory of superconductivity: Gauge invariance and the Meissner effect, Phys. Rev. 110, 827.

    Article  MathSciNet  ADS  Google Scholar 

  • Astrakharchik, G. E., J. Boronat, J. Casulleras, and S. Giorgini (2004), Equation of state of a Fermi gas in the BEC-BCS crossover: A Quantum Monte Carlo study, Phys. Rev. Lett. 93, 200404.

    Article  ADS  Google Scholar 

  • Barankov, R. (2008), The Higgs resonance in fermionic pairing, arXiv:0812.4575 [cond-mat.supr-con].

    Google Scholar 

  • Barankov, R. A. and L. S. Levitov (2007), Excitation of the Dissipationless Higgs Mode in a Fermionic Condensate, arXiv:0704.1292 [cond-mat.supr-con].

    Google Scholar 

  • Bartenstein, M., A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H. Denschlag, and R. Grimm (2004), Crossover from a Molecular Bose-Einstein Condensate to a Degenerate Fermi Gas, Phys. Rev. Lett. 92, 120401.

    Article  ADS  Google Scholar 

  • Bartosch, L., H. Freire, J. J. Ramos Cardenas, and P. Kopietz (2009a), Functional renormalization group approach to the Anderson impurity model, J. Phys.: Condens. Matter 21, 305602.

    Article  Google Scholar 

  • Bartosch, L., P. Kopietz, and A. Ferraz (2009b), Renormalization of the BCS–BEC crossover by order-parameter fluctuations, Phys. Rev. B 80, 104514.

    Article  ADS  Google Scholar 

  • Berges, J. and G. Hoffmeister (2009), Nonthermal fixed points and the functional renormalization group, Nucl. Phys. B 813, 383.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Birse, M. C., B. Krippa, J. A. McGovern, and N. R. Walet (2005), Pairing in many-fermion systems: An exact renormalisation group treatment, Phys. Lett. B 605, 287.

    Article  ADS  Google Scholar 

  • Bloch, I., J. Dalibard, and W. Zwerger (2008), Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885.

    Article  ADS  Google Scholar 

  • Bogoliubov, N. N. (1958), On a new method in the theory of superconductivity, Nuovo Cimento 7, 794.

    Article  Google Scholar 

  • Borejsza, K. and N. Dupuis (2003), Antiferromagnetism and single-particle properties in the two-dimensional half-filled Hubbard model: Slater vs Mott-Heisenberg, Europhys. Lett. 63, 722.

    Article  ADS  Google Scholar 

  • Bourdel, T., L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. Kokkelmans, and C. Salomon (2004), Experimental study of the BEC-BCS crossover region in lithium 6 , Phys. Rev. Lett. 93, 050401.

    Article  ADS  Google Scholar 

  • Braun, J. (2009), The QCD phase boundary from quark-gluon dynamics, Eur. Phys. J. C 64, 459.

    Article  ADS  Google Scholar 

  • Canet, L., B. Delamotte, O. Deloubrière, and N. Wschebor (2004), Nonperturbative renormalization-group study of reaction-diffusion processes, Phys. Rev. Lett. 92, 195703.

    Article  ADS  Google Scholar 

  • Canet, L., H. Chaté, B. Delamotte, I. Dornic, and M. A. Muñoz (2005), Nonperturbative fixed point in a nonequilibrium phase transition, Phys. Rev. Lett. 95, 100601.

    Article  ADS  Google Scholar 

  • Carlson, J., S. Y. Chang, V. R. Pandharipande, and K. E. Schmidt (2003), Superfluid Fermi gases with large scattering length, Phys. Rev. Lett. 91, 050401.

    Article  ADS  Google Scholar 

  • Carlson, J. and S. Reddy (2005), Asymmetric two-component fermion systems in strong soupling, Phys. Rev. Lett. 95, 060401.

    Article  ADS  Google Scholar 

  • Castellani, C. and C. Di Castro (1979), Arbitrariness and symmetry properties of the functional formulation of the Hubbard hamiltonian, Phys. Lett. A 70, 37.

    Article  ADS  Google Scholar 

  • Chang, S. Y., V. R. Pandharipande, J. Carlson, and K. E. Schmidt (2004), Quantum Monte Carlo studies of superfluid Fermi gases, Phys. Rev. A 70, 043602.

    Article  ADS  Google Scholar 

  • De Palo, S., C. Castellani, C. Di Castro, and B. Chakraverty (1999), Effective action for superconductors and BCS-Bose crossover, Phys. Rev. B 60, 564.

    Article  ADS  Google Scholar 

  • Diehl, S., H. Gies, J. M. Pawlowski, and C. Wetterich (2007a), Flow equations for the BCS-BEC crossover, Phys. Rev. A 76, 021602(R).

    ADS  Google Scholar 

  • Diehl, S., H. Gies, J. M. Pawlowski, and C. Wetterich (2007b), Renormalization flow and universality for ultracold fermionic atoms, Phys. Rev. A 76, 053627.

    Article  ADS  Google Scholar 

  • Diehl, S., S. Floerchinger, H. Gies, J. M. Pawlowski, and C. Wetterich (2009), Functional renormalization group approach to the BCS-BEC crossover, arXiv:0907.2193 [cond-mat.quant-gas].

    Google Scholar 

  • Diener, R. B., R. Sensarma, and M. Randeria (2008), Quantum fluctuations in the superfluid state of the BCS-BEC crossover, Phys. Rev. A 77, 023626.

    Article  ADS  Google Scholar 

  • Drechsler, M. and W. Zwerger (1992), Crossover from BCS-superconductivity to Bose-condensation, Ann. Phys. (Leipzig) 504, 15.

    Article  ADS  Google Scholar 

  • Dupuis, N. (2002), Spin fluctuations and pseudogap in the two-dimensional half-filled Hubbard model at weak coupling, Phys. Rev. B 65, 245118.

    Article  ADS  Google Scholar 

  • Dupuis, N. (2005), Effective action for superfluid Fermi systems in the strong coupling limit, Phys. Rev. A 72, 013606.

    Article  ADS  Google Scholar 

  • Dupuis, N. (2009a), Infrared behavior and spectral function of a Bose superfluid at zero temperature, Phys. Rev. A 80, 043627.

    Article  MathSciNet  ADS  Google Scholar 

  • Dupuis, N. (2009b), Unified picture of superfluidity: From Bogoliubov’s approximation to Popov’s hydrodynamic theory, Phys. Rev. Lett. 102, 190401.

    Article  ADS  Google Scholar 

  • Dupuis, N. and K. Sengupta (2007), Non-perturbative renormalization group approach to zero-temperature Bose systems, Europhys. Lett. 80, 50007.

    Article  MathSciNet  ADS  Google Scholar 

  • Eagles, D. M. (1969), Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductors, Phys. Rev. 186, 456.

    Article  ADS  Google Scholar 

  • Eichler, C. (2009), Anwendung der Funktionalen Renormierungsgruppe auf wechselwirkende Bosonen, Diplomarbeit, Goethe-Universität Frankfurt.

    Google Scholar 

  • Eichler, C., N. Hasselmann, and P. Kopietz (2009), Condensate density of interacting bosons: A functional renormalization group approach, Phys. Rev. E 80, 051129.

    Article  ADS  Google Scholar 

  • Engelbrecht, J. R., M. Randeria, and C. A. R. Sáde Melo (1997), BCS to bose crossover: Broken-symmetry state, Phys. Rev. B 55, 15153.

    Article  ADS  Google Scholar 

  • Floerchinger, S., M. Scherer, D. S., and C. Wetterich (2008), Particle-hole fluctuations in the BCS-BEC Crossover, Phys. Rev. B 78, 174528.

    Google Scholar 

  • Floerchinger, S. and C. Wetterich (2008), Functional renormalization for Bose-Einstein condensation, Phys. Rev. A 77, 053603.

    Article  ADS  Google Scholar 

  • Floerchinger, S. and C. Wetterich (2009a), Nonperturbative thermodynamics of an interacting Bose gas, Phys. Rev. A 79, 063602.

    Article  ADS  Google Scholar 

  • Floerchinger, S. and C. Wetterich (2009b), Superfluid Bose gas in two dimensions, Phys. Rev. A 79, 013601.

    Article  ADS  Google Scholar 

  • Gasenzer, T. and J. M. Pawlowski (2008), Towards far-from-equilibrium quantum field dynamics: A functional renormalisation-group approach, Phys. Lett. B 670, 135.

    Article  ADS  Google Scholar 

  • Gezzi, R., T. Pruschke, and V. Meden (2007), Functional renormalization group for nonequilibrium quantum many-body problems, Phys. Rev. B 75, 045324.

    Article  ADS  Google Scholar 

  • Gies, H. (2006), Introduction to the functional RG and applications to gauge theories, arXiv:hep-ph/0611146.

    Google Scholar 

  • Gies, H. and C. Wetterich (2002), Renormalization flow of bound states, Phys. Rev. D 65, 065001.

    Article  MathSciNet  ADS  Google Scholar 

  • Gies, H. and C. Wetterich (2004), Universality of spontaneous chiral symmetry breaking in gauge theories, Phys. Rev. D 69, 025001.

    Article  ADS  Google Scholar 

  • Hamann, D. R. (1969), Fluctuation theory of dilute magnetic alloys, Phys. Rev. Lett. 23, 95.

    Article  ADS  Google Scholar 

  • Haussmann, R., W. Rantner, S. Cerrito, and W. Zwerger (2007), Thermodynamics of the BCS-BEC crossover, Phys. Rev. A 75, 023610.

    Article  ADS  Google Scholar 

  • Husemann, C. and M. Salmhofer (2009a), Efficient Fermionic One-Loop RG for the 2D-Hubbard Model at Van Hove Filling, arXiv:0902.1651v1 [cond-mat.str-el].

    Google Scholar 

  • Husemann, C. and M. Salmhofer (2009b), Efficient parametrization of the vertex function, Ω scheme, and the (t, t′) Hubbard model at van Hove filling, Phys. Rev. B 79, 195125.

    Article  ADS  Google Scholar 

  • Jaeckel, J. and C. Wetterich (2003), Flow equations without mean field ambiguity, Phys. Rev. D 68, 025020.

    Article  ADS  Google Scholar 

  • Jakobs, S. G., V. Meden, and H. Schoeller (2007), Nonequilibrium functional renormalization group for interacting quantum systems, Phys. Rev. Lett. 99, 150603.

    Article  ADS  Google Scholar 

  • Kamenev, A. (2004), Many-Body Theory of Non-equilibrium Systems, in H. Bouchiat, Y. Gefen, S. Guèron, G. Montambaux and J. Dalibard, editors, Les Houches, volume LX, Elesvier, North-Holland, Amsterdam.

    Google Scholar 

  • Kehrein, S. (2005), Scaling and decoherence in the nonequilibrium Kondo model, Phys. Rev. Lett. 95, 056602.

    Article  ADS  Google Scholar 

  • Kehrein, S. (2006), The Flow Equation Approach to Many-Particle Systems, Springer, Berlin.

    MATH  Google Scholar 

  • Kinast, J., A. Turlapov, J. E. Thomas, Q. Chen, J. Stajic, and K. Levin (2005), Heat capacity of a strongly interacting Fermi gas, Science 307, 1296.

    Article  ADS  Google Scholar 

  • Kopietz, P. (1997), Bosonization of Interacting Fermions in Arbitrary Dimensions, Springer, Berlin.

    Google Scholar 

  • Krippa, B. (2007), Superfluidity in many fermion systems: Exact renormalization group treatment, Eur. Phys. J. A 31, 734.

    Article  ADS  Google Scholar 

  • Krippa, B. (2009), Exact renormalization group flow for ultracold Fermi gases in the unitary limit, J. Phys. A: Math. Theor. 42, 465002.

    Article  MathSciNet  ADS  Google Scholar 

  • Krippa, B., M. C. Birse, N. R. Walet, and J. A. McGovern (2005), Exact renormalisation group and pairing in many-fermion systems, Nucl. Phys. A 749, 134.

    Article  ADS  Google Scholar 

  • Leggett, A. J. (1980), Modern Trends in the Theory of Condensed Matter, in A. Pekalski and R. Przystawa, editors, Lecture Notes in Physics, volume 115, Springer, Berlin.

    Google Scholar 

  • Lerch, N., L. Bartosch, and P. Kopietz (2008), Absence of fermionic quasiparticles in the superfluid state of the attractive Fermi gas, Phys. Rev. Lett. 100, 050403.

    Article  ADS  Google Scholar 

  • Littlewood, P. B. and C. M. Varma (1982), Amplitude collective modes in superconductors and their coupling to charge-density waves, Phys. Rev. B 26, 4883.

    Article  ADS  Google Scholar 

  • Macêdo, C. A. and M. D. Coutinho-Filho (1991), Hubbard model: Functional-integral approach and diagrammatic perturbation theory, Phys. Rev. B 43, 13515.

    Article  ADS  Google Scholar 

  • Manmana, S. R., S. Wessel, R. M. Noack, and A. Muramatsu (2007), Strongly correlated fermions after a quantum quench, Phys. Rev. Lett. 98, 210405.

    Article  ADS  Google Scholar 

  • Manmana, S. R., S. Wessel, R. M. Noack, and A. Muramatsu (2009), Time evolution of correlations in strongly interacting fermions after a quantum quench, Phys. Rev. B 79, 155104.

    Article  ADS  Google Scholar 

  • Marini, M., F. Pistolesi, and G. C. Strinati (1998), Evolution from BCS superconductivity to Bose condensation: analytic results for the crossover in three dimensions, Eur. Phys. J. B 1, 151.

    Article  ADS  Google Scholar 

  • Nikolić, P. and S. Sachdev (2007), Renormalization group fixed points, universal phase diagram, and 1/ N expansion for quantum liquids with interactions near the unitarity limit, Phys. Rev. A 75, 033608.

    Article  ADS  Google Scholar 

  • Nishida, Y. and D. T. Son (2006), ε-Expansion for a Fermi gas at infinite scattering length, Phys. Rev. Lett. 97, 050403.

    Article  ADS  Google Scholar 

  • Nishida, Y. and D. T. Son (2007), Fermi gas near unitarity around four and two spatial dimensions, Phys. Rev. A 75, 063617.

    Article  MathSciNet  ADS  Google Scholar 

  • Nozières, P. and S. Schmitt-Rink (1985), Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity, J. Low Temp. Phys. 59, 195.

    Article  ADS  Google Scholar 

  • Randeria, M. (1995), Crossover from BCS Theory to Bose-Einstein Condensation, in A. Griffin, D. Snorke, and S. Stringari, editors, Bose-Einstein Condensation, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Salmhofer, M., C. Honerkamp, W. Metzner, and O. Lauscher (2004), Renormalization group flows into phases with broken symmetry, Progr. Theoret. Phys. 112, 943.

    Article  ADS  MATH  Google Scholar 

  • Sauli, F. and P. Kopietz (2006), Low-density expansion for the two-dimensional electron gas, Phys. Rev. B 74, 193106.

    Article  ADS  Google Scholar 

  • Schoeller, H. (2009), A perturbative non-equilibrium renormalization group method for dissipative quantum mechanics: Real-time RG in frequency space, Eur. Phys. J. Special Topics 168, 179.

    Article  ADS  Google Scholar 

  • Schoeller, H. and F. Reininghaus (2009), Real-time renormalization group in frequency space: A two-loop analysis of the nonequilibrium anisotropic Kondo model at finite magnetic field, Phys. Rev. B 80, 045117.

    Article  ADS  Google Scholar 

  • Schollwöck, U. (2005), The density-matrix renormalization group, Rev. Mod. Phys. 77, 259.

    Article  ADS  Google Scholar 

  • Schrieffer, J. R. (1964), Theory of Superconductivity, W. A. Benjamin, Inc., New York.

    MATH  Google Scholar 

  • Schulz, H. J. (1990), Effective action for strongly correlated fermions from functional integrals, Phys. Rev. Lett. 65, 2462.

    Article  ADS  Google Scholar 

  • Schwiete, G. and K. B. Efetov (2006), Temperature dependence of the spin susceptibility of a clean Fermi gas with repulsion, Phys. Rev. B 74, 165108.

    Article  ADS  Google Scholar 

  • Sinner, A., N. Hasselmann, and P. Kopietz (2009), Spectral function and quasiparticle damping of interacting bosons in two dimensions, Phys. Rev. Lett. 102, 120601.

    Article  ADS  Google Scholar 

  • Strack, P., R. Gersch, and W. Metzner (2008), Renormalization group flow for fermionic superfluids at zero temperature, Phys. Rev. B 78, 014522.

    Article  ADS  Google Scholar 

  • Varma, C. M. (2002), Higgs boson in superconductors, J. Low Temp. Phys. 126, 901.

    Article  Google Scholar 

  • Veillette, M. Y., D. E. Sheehy, and L. Radzihovsky (2007), Large-N expansion for unitary superfluid Fermi gases, Phys. Rev. A 75, 043614.

    Article  ADS  Google Scholar 

  • Wang, S. Q., W. E. Evenson, and J. R. Schrieffer (1969), Theory of itinerant ferromagnets exhibiting localized-moment behavior above the Curie point, Phys. Rev. Lett. 23, 92.

    Article  ADS  Google Scholar 

  • Wetterich, C. (2008), Functional renormalization for quantum phase transitions with non-relativistic bosons, Phys. Rev. B 77, 064504.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kopietz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kopietz, P., Bartosch, L., Schütz, F. (2010). Superfluid Fermions: Partial Bosonization in the Particle–Particle Channel. In: Introduction to the Functional Renormalization Group. Lecture Notes in Physics, vol 798. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05094-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05094-7_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05093-0

  • Online ISBN: 978-3-642-05094-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics