Advertisement

Search for More Declarativity

Backward Reasoning for Rule Languages Reconsidered
  • Simon Brodt
  • François Bry
  • Norbert Eisinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5837)

Abstract

Good tree search algorithms are a key requirement for inference engines of rule languages. As Prolog exemplifies, inference engines based on traditional uninformed search methods with their well-known deficiencies are prone to compromise declarativity, the primary concern of rule languages. The paper presents a new family of uninformed search algorithms that combine the advantages of the traditional ones while avoiding their shortcomings. Moreover, the paper introduces a formal framework based on partial orderings, which allows precise and elegant analysis of such algorithms.

Keywords

Logic Program Space Complexity Ordinal Number Inference Engine Formal Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barták, R.: Incomplete depth-first search techniques: A short survey. In: Proceedings of 6th Workshop on Constraint Programming for Decision and Control (CPDC 2004), pp. 7–14 (2004)Google Scholar
  2. 2.
    Brodt, S.: Tree-search, partial orderings, and a new family of uninformed algorithms. Research report PMS-FB-2009-7, Institute for Informatics, University of Munich, Oettingenstraße 67, D-80538, München, Germany (2009), http://www.pms.ifi.lmu.de/publikationen#PMS-FB-2009-7
  3. 3.
    Bry, F.: Query evaluation in recursive databases: Bottom-up and top-down reconciled. Data and Knowledge Engineering 5(4), 289–312 (1990)CrossRefGoogle Scholar
  4. 4.
    Debray, S., Ramakrishnan, R.: Abstract interpretation of logic programs using magic transformations. Journal of Logic Programming 18, 149–176 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ginsberg, M.L., Harvey, W.D.: Iterative broadening. In: Proc. Eighth National Conference on Artificial Intelligence (AAAI 1990), pp. 216–220 (1990)Google Scholar
  6. 6.
    Kerisit, J.-M.: A relational approach to logic programming: the extended Alexander method. Theoretical Computer Science 69, 55–68 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Knuth, D.E.: The Art of Computer Programming, 3rd edn., vol. 1. Addison-Wesley Publishing Co., Reading (1997)Google Scholar
  8. 8.
    Korf, R.E.: Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence 27(1), 97–109 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)zbMATHGoogle Scholar
  10. 10.
    Nilsson, N.J.: Principles of Artificial Intelligence. Springer, Heidelberg (1982)zbMATHGoogle Scholar
  11. 11.
    Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley Publishing Co., Reading (1984)Google Scholar
  12. 12.
    Ruml, W.: Heuristic search in bounded-depth trees: Best-leaf-first search. Technical report, Harvard University (2002)Google Scholar
  13. 13.
    Shen, Y.-D., Yuan, L.-Y., You, J.-H.: SLT-resolution for the well-founded semantics. Journal of Automated Reasoning 28, 53–97 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Stickel, M.E.: A Prolog technology theorem prover: Implementation by an extended Prolog compiler. Journal of Automated Reasoning 4(4), 353–380 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Tamaki, H., Sato, T.: OLDT resolution with tablulation. In: Wada, E. (ed.) Logic Programming 1986. LNCS, vol. 264, pp. 84–98. Springer, Heidelberg (1987)Google Scholar
  16. 16.
    Winston, P.H.: Artificial Intelligence, 3rd edn. Addison-Wesley Publishing Co., Reading (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Simon Brodt
    • 1
  • François Bry
    • 1
  • Norbert Eisinger
    • 1
  1. 1.Institute for InformaticsUniversity of MunichMünchenGermany

Personalised recommendations