Advertisement

A Preferential Tableaux Calculus for Circumscriptive \({\mathcal ALCO}\)

  • Stephan Grimm
  • Pascal Hitzler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5837)

Abstract

Nonmonotonic extensions of description logics (DLs) allow for default and local closed-world reasoning and are an acknowledged desired feature for applications, e.g. in the Semantic Web. A recent approach to such an extension is based on McCarthy’s circumscription, which rests on the principle of minimising the extension of selected predicates to close off dedicated parts of a domain model. While decidability and complexity results have been established in the literature, no practical algorithmisation for circumscriptive DLs has been proposed so far. In this paper, we present a tableaux calculus that can be used as a decision procedure for concept satisfiability with respect to concept-circumscribed \({\mathcal ALCO}\) knowledge bases. The calculus builds on existing tableaux for classical DLs, extended by the notion of a preference clash to detect the non-minimality of constructed models.

Keywords

Description Logic Polar Bear Constraint System Nonmonotonic Reasoning Atomic Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Hollunder, B.: Embedding Defaults into Terminological Knowledge Representation Formalisms. Journal of Automated Reasoning 14(1), 149–180 (1995)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bonatti, P., Lutz, C., Wolter, F.: Expressive Non-Monotonic Description Logics Based on Circumscription. In: Proc. of the Tenth Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 400–410 (2006)Google Scholar
  3. 3.
    Buchheit, M., Donini, F.M., Schaerf, A.: Decidable Reasoning in Terminological Knowledge Representation Systems. J. Artif. Intell. Res (JAIR) 1, 109–138 (1993)MATHMathSciNetGoogle Scholar
  4. 4.
    de Kleer, J., Konolige, K.: Eliminating the Fixed Predicates from a Circumscription. Artif. Intell. 39(3), 391–398 (1989)MATHCrossRefGoogle Scholar
  5. 5.
    Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: An Epistemic Operator for Description Logics. Artificial Intelligence 100(1-2), 225–274 (1998)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Donini, F.M., Nardi, D., Rosati, R.: Description Logics of Minimal Knowledge and Negation as Failure. ACM Trans. on Computational Logic 3(2), 177–225 (2002)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Grimm, S.: Semantic Matchmaking with Nonmonotonic Description Logics. IOS Press, Amsterdam (2008)Google Scholar
  8. 8.
    Grimm, S., Hitzler, P.: Defeasible Inference with OWL Ontologies. In: Proceedings of the ESWC 2007 Workshop on Advancing Reasoning on the Web: Scalability and Commonsense, ARea 2008 (June 2008)Google Scholar
  9. 9.
    Grimm, S., Hitzler, P.: Semantic Matchmaking of Resources with Local Closed-World Reasoning. Int. Journal of eCommerce (IJEC) 12(2), 89–126 (2008)CrossRefGoogle Scholar
  10. 10.
    Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman & Hall/CRC (2009)Google Scholar
  11. 11.
    Horrocks, I., Sattler, U.: Ontology Reasoning in the SHOQ(D) Description Logic. In: Proc. IJCAI 2001, pp. 199–204 (2001)Google Scholar
  12. 12.
    Knorr, M., Alferes, J.J., Hitzler, P.: A Coherent Well-founded Model for Hybrid MKNF Knowledge Bases. In: Proceedings of the 18th European Conference on Artificial Intelligence, ECAI 2008, pp. 99–103. IOS Press, Amsterdam (2008)Google Scholar
  13. 13.
    McCarthy, J.: Circumscription – A Form of Non-Monotonic Reasoning. Artificial Intelligence 13(1–2), 27–39 (1980)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Motik, B., Rosati, R.: A Faithful Integration of Description Logics with Logic Programming. In: Proc. of the 20th Intern. Joint Conference on Artificial Intelligence (IJCAI 2007), Hyderabad, India, January 2007, pp. 477–482. AAAI Press, Stanford (2007)Google Scholar
  15. 15.
    Niemelä, I.: Implementing Circumscription Using a Tableau Method. In: Proc. of the 12th Europ. Conf. on Artificial Intelligence (ECAI 1996). J. Wiley & Sons, Chichester (1996)Google Scholar
  16. 16.
    Schaerf, A.: Reasoning with Individuals in Concept Languages. Data Knowl. Eng. 13(2), 141–176 (1994)CrossRefGoogle Scholar
  17. 17.
    Schmidt-Schauß, M., Smolka, G.: Attributive Concept Descriptions with Complements. Artif. Intell. 48(1), 1–26 (1991)MATHCrossRefGoogle Scholar
  18. 18.
    W3C OWL Working Group. OWL 2 Web Ontology Language: Document Overview (2009), http://www.w3.org/TR/owl2-overview/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stephan Grimm
    • 1
  • Pascal Hitzler
    • 2
  1. 1.FZI Research Center for Information TechnologiesUniv. of KarlsruheGermany
  2. 2.Institute AIFBUniversity of KarlsruheGermany

Personalised recommendations