Advertisement

A Minimal Deductive System for General Fuzzy RDF

  • Umberto Straccia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5837)

Abstract

It is well-known that crisp RDF is not suitable to represent vague information. Fuzzy RDF variants are emerging to overcome this limitations. In this work we provide, under a very general semantics, a deductive system for a salient fragment of fuzzy RDF. We then also show how we may compute the top-k answers of the union of conjunctive queries in which answers may be scored by means of a scoring function.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: Sw-store: a vertically partitioned DBMS for semantic web data management. VLDB J. 18(2), 385–406 (2009)CrossRefGoogle Scholar
  2. 2.
    Chang, K.C.-C., won Hwang, S.: Minimal probing: Supporting expensive predicates for top-k queries. In: SIGMOD Conference, pp. 346–357 (2002)Google Scholar
  3. 3.
    Fitting, M.C.: Bilattices are nice things. In: Conference on Self-Reference, Copenhagen, Denmark (2002)Google Scholar
  4. 4.
    Fitting, M.C.: Fixpoint semantics for logic programming - a survey. Theoretical Computer Science 21(3), 25–51 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Ginsberg, M.L.: Multi-valued logics: a uniform approach to reasoning in artificial intelligence. Computational Intelligence 4, 265–316 (1988)CrossRefGoogle Scholar
  6. 6.
    Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of semantic web databases. In: Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS 2004). ACM Press, New York (2004)Google Scholar
  7. 7.
    Hähnle, R.: Many-valued logics and mixed integer programming. Annals of Mathematics and Artificial Intelligence 3, 4(12), 231–264 (1994)CrossRefGoogle Scholar
  8. 8.
    Hähnle, R.: Advanced many-valued logics. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 2. Kluwer, Dordrecht (2001)Google Scholar
  9. 9.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)zbMATHGoogle Scholar
  10. 10.
    Li, C., Chang, K.C.-C., Ilyas, I.F., Song, S.: RankSQL: query algebra and optimization for relational top-k queries. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data (SIGMOD 2005), pp. 131–142. ACM Press, New York (2005)CrossRefGoogle Scholar
  11. 11.
    Lukasiewicz, T., Straccia, U.: Top-k retrieval in description logic programs under vagueness for the semantic web. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS (LNAI), vol. 4772, pp. 16–30. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Mazzieri, M.: A fuzzy RDF semantics to represent trust metadata. In: Proceedings of the 1st Italian Semantic Web Workshop: Semantic Web Applications and Perspectives, SWAP 2004 (2004)Google Scholar
  13. 13.
    Mazzieri, M., Dragoni, A.F.: A fuzzy semantics for semantic web languages. In: Proceedings of the ISWC Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2005). CEUR Workshop Proceedings (2005)Google Scholar
  14. 14.
    Mazzieri, M., Dragoni, A.F.: A fuzzy semantics for the resource description framework. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 244–261. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Muñoz, S., Pérez, J., Gutierrez, C.: Minimal deductive systems for RDF. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53–67. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Novák, V.: Which logic is the real fuzzy logic? Fuzzy Sets and Systems, 635–641 (2005)Google Scholar
  17. 17.
  18. 18.
  19. 19.
    Straccia, U.: Basic concepts and techniques for managing uncertainty and vagueness in semantic web languages. In: Reasoning Web, 4th International Summer School (2007) (invited Lecture)Google Scholar
  20. 20.
    Straccia, U.: Managing uncertainty and vagueness in description logics, logic programs and description logic programs. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 54–103. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Udrea, O., Recupero, D.R., Subrahmanian, V.S.: Annotated RDF. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 487–501. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Vaneková, V., Bella, J., Gurský, P., Horváth, T.: Fuzzy rdf in the semantic web: Deduction and induction. In: Proceedings of Workshop on Data Analysis, WDA 2005 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Umberto Straccia
    • 1
  1. 1.Istituto di Scienza e Tecnologie dell’Informazione (ISTI - CNR)PisaItaly

Personalised recommendations