Skip to main content

Answer Sets in a Fuzzy Equilibrium Logic

  • Conference paper
Web Reasoning and Rule Systems (RR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5837))

Included in the following conference series:

Abstract

Since its introduction, answer set programming has been generalized in many directions, to cater to the needs of real-world applications. As one of the most general “classical” approaches, answer sets of arbitrary propositional theories can be defined as models in the equilibrium logic of Pearce. Fuzzy answer set programming, on the other hand, extends answer set programming with the capability of modeling continuous systems. In this paper, we combine the expressiveness of both approaches, and define answer sets of arbitrary fuzzy propositional theories as models in a fuzzification of equilibrium logic. We show that the resulting notion of answer set is compatible with existing definitions, when the syntactic restrictions of the corresponding approaches are met. We furthermore locate the complexity of the main reasoning tasks at the second level of the polynomial hierarchy. Finally, as an illustration of its modeling power, we show how fuzzy equilibrium logic can be used to find strong Nash equilibria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguzzoli, S., Ciabattoni, A.: Finiteness in infinite-valued Łukasiewicz logic. Journal of Logic, Language, and Information 9, 5–29 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  3. Damásio, C.V., Medina, J., Ojeda-Aciego, M.: Sorted multi-adjoint logic programs: Termination results and applications. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 252–265. Springer, Heidelberg (2004)

    Google Scholar 

  4. Damásio, C.V., Pereira, L.M.: Hybrid probabilistic logic programs as residuated logic programs. In: Brewka, G., Moniz Pereira, L., Ojeda-Aciego, M., de Guzmán, I.P. (eds.) JELIA 2000. LNCS (LNAI), vol. 1919, pp. 57–72. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Damásio, C.V., Pereira, L.M.: Antitonic logic programs. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 379–392. Springer, Heidelberg (2001)

    Google Scholar 

  6. Damasio, C.V., Pereira, L.M.: An encompassing framework for paraconsistent logic programs. Journal of Applied Logic 3, 67–95 (2003)

    MathSciNet  Google Scholar 

  7. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Transactions on Database Systems 22(3), 364–418 (1997)

    Article  Google Scholar 

  8. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the Fifth International Conference and Symposium on Logic Programming, pp. 1081–1086 (1988)

    Google Scholar 

  10. Gottlob, G., Greco, G., Scarcello, F.: Pure Nash equilibria: hard and easy games. Journal of Artificial Intelligence Research 24, 357–406 (2005)

    MATH  MathSciNet  Google Scholar 

  11. HadjAli, A., Dubois, D., Prade, H.: Qualitative reasoning based on fuzzy relative orders of magnitude. IEEE Transactions on Fuzzy Systems 11(1), 9–23 (2003)

    Article  Google Scholar 

  12. Hähnle, R.: Many-valued logic and mixed integer programming. Annals of Mathematics and Artificial Intelligence 12, 231–264 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Janssen, J., Heymans, S., Vermeir, D., De Cock, M.: Compiling fuzzy answer set programs to fuzzy propositional theories. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 362–376. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Janssen, J., Schockaert, S., Vermeir, D., De Cock, M.: General fuzzy answer set programming: The basic language (submitted)

    Google Scholar 

  15. Janssen, J., Schockaert, S., Vermeir, D., De Cock, M.: General fuzzy answer set programs. In: Proceedings of the 8th International Workshop on Fuzzy Logic and Applications (WILF), pp. 352–359 (2009)

    Google Scholar 

  16. Lifschitz, V.: Twelve definitions of a stable model. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 37–51. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Logic 2(4), 526–541 (2001)

    Article  MathSciNet  Google Scholar 

  18. Lukasiewicz, T.: Probabilistic logic programming. In: Proceedings of the 13th European Conference on Artificial Intelligence (ECAI 1998), pp. 388–392 (1998)

    Google Scholar 

  19. Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs under the answer set semantics for the semantic web. In: Marchiori, M., Pan, J.Z., de Marie, C.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 289–298. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Moore, J., Bard, J.: The mixed integer linear bilevel programming problem. Operations Research 38(5), 911–921 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nicolas, P., Garcia, L., Stéphan, I., Lefèvre, C.: Possibilistic uncertainty handling for answer set programming. Ann. Math. Artif. Intell. 47(1-2), 139–181 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web. Technical report, Stanford Digital Library Technologies Project (1998)

    Google Scholar 

  23. Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  24. Saccá, D., Zaniolo, C.: Stable models and non-determinism in logic programs with negation. In: Proceedings of the ACM Symposium on Principles of Database Systems, pp. 205–217 (1990)

    Google Scholar 

  25. Sakama, C., Inoue, K.: Paraconsistent stable semantics for extended disjunctive programs. Journal of Logic and Computation 5, 265–285 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Straccia, U.: Annotated answer set programming. In: Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2006 (2006)

    Google Scholar 

  27. Van Nieuwenborgh, D., De Cock, M., Vermeir, D.: An introduction to fuzzy answer set programming. Annals of Mathematics and Artificial Intelligence 50(3-4), 363–388 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schockaert, S., Janssen, J., Vermeir, D., De Cock, M. (2009). Answer Sets in a Fuzzy Equilibrium Logic. In: Polleres, A., Swift, T. (eds) Web Reasoning and Rule Systems. RR 2009. Lecture Notes in Computer Science, vol 5837. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05082-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05082-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05081-7

  • Online ISBN: 978-3-642-05082-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics