Skip to main content

Role of Microbial Biofertilizers in the Development of a Sustainable Agriculture in the Tropics

Part of the Soil Biology book series (SOILBIOL,volume 21)

Abstract

The new social and economic world order has created new challenges for the development of agriculture in the tropics. Functional microbial biofertilizers have been used in some tropical countries for more than half a century in both small and large farms. Biological nitrogen fixation, plant growth promotion, phosphorus solubilization, and translocation to host plants are the major benefits of biofertilizer use, observed or claimed by researchers and product developers. However, a major constraint for the further development of the microbial biofertilizer industry is the demonstration of consistent field effects of the marketed products. This chapter discusses the main issues related to the functional characterization and promotion of microbial biofertilizer in tropical countries, and the potential of these biofertilizers as tools for small- and large-scale sustainable crop production.

Keywords

  • Arbuscular Mycorrhizal Fungus
  • Common Bean
  • Biological Nitrogen Fixation
  • Microbial Inoculant
  • Soil Fertility Management

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-05076-3_11
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-05076-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

References

  • Alam MS, Cui Z, Yamagishi T, Ishii R (2001) Grain yield and related physiological characteristics of rice plants (Oryza sativa L.) inoculated with free-living rhizobacteria. Plant Prod Sci 4:126–130

    CrossRef  Google Scholar 

  • Baldani JI, Baldani VLD (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Cienc 77:549–579

    CAS  PubMed  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    CAS  CrossRef  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum–plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    CAS  CrossRef  Google Scholar 

  • Biagro (2008) Laboratorios Biagro S.A. http://www.biagrosa.com/inocu.htmd. Accessed 20 Nov 2008

  • BioScientific Inc (2008) BuRIZE — VA-mycorrhizal soil and root inoculant, for use on production agricultural crops. http://www.biosci.com/brochure/BRZBro.pdf. Accessed 20 Nov 2008

  • Boddey RM, De Moraes Sá JC, Alves BJR, Urquiaga S (1997) The contribution of biological nitrogen fixation for sustainable agricultural systems in the tropics. Soil Biol Biochem 29:787–799

    CAS  CrossRef  Google Scholar 

  • Boddey RM, Polidoro JC, Resende AS, Alves BJR, Urquiaga S (2001) Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugar cane and other grasses. Aust J Plant Physiol 28:889–895

    Google Scholar 

  • Boddey RM, Urquiaga S, Alves BJR, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149

    CAS  CrossRef  Google Scholar 

  • Caballero-Mellado J, Carcano-Montiel MG, Mascarua-Esparza MA (1992) Field inoculation of wheat (Triticum aestivum) with Azospirillum brasilense under temperate climate. Symbiosis 13:243–253

    Google Scholar 

  • Carrillo MA, Franco AD, Cano IG (2007) Okra (Abelmoschus esculentus L.) mycorrhization under drip irrigation. Revista Fitotecnia Mexicana 30:437–441

    Google Scholar 

  • Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E (2007) Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett 276:1–11

    CAS  CrossRef  PubMed  Google Scholar 

  • CIAT (2002) Convenio Colombia-CIAT: Un negocio de amplios horizontes para el llano. Feriva, Palmira

    Google Scholar 

  • Cobos C (2005) Crean con hongos nuevo fertilizante. http://fox.presidencia.gob.mx/buenasnoticias/. Accessed 20 Nov 2008

  • CORPOICA (2008) Insumos agrícola orgánicos CORPOICA. Presentación productos institucionales. http://www.corpoica.gov.co/SitioWeb/Archivos/Publicaciones/caminosfertiles.pdf. Accessed 20 Nov 2008

  • Corredor G (2008) Micorrizas arbusculares: aplicación para el manejo de los agroecosistemas. http://www.turipana.org.co/Micorrizas.html. Accessed 20 Nov 2008

  • Dalpé Y, Monreal M (2004) Arbuscular mycorrhiza inoculum to support sustainable cropping systems. Crop Manag 10:1094–1104

    Google Scholar 

  • Dobbelaere S et al (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Döbereiner J (1997) Biological nitrogen fixation in the tropics: social and economic contributions. Soil Biol Biochem 29:771–774

    CrossRef  Google Scholar 

  • Döbereiner J, Baldani VLD (1998) Biological nitrogen fixation by endophytic diazotrophs in non-leguminous crops in the tropics. In: Malik KA, Mirza MS, Ladha JK (eds) Nitrogen fixation with non-legumes, vol 1. Kluwer Academic Publishers, Dordrecht, pp 3–7

    Google Scholar 

  • Elbeltagy A et al (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293

    CAS  CrossRef  PubMed  Google Scholar 

  • Esilaba AO, Byalebeka JB, Delve RJ, Okalebo JR, Ssenyange D, Mbalule M, Ssali H (2005) On farm testing of integrated nutrient management strategies in eastern Uganda. Agric Syst 86:144–165

    CrossRef  Google Scholar 

  • FNCA (2006) Biofertilizer manual. Japan Atomic Industrial Forum, Tokyo

    Google Scholar 

  • Fuentes-Ramirez LE, Caballero-Mellado J (2005) Bacterial biofertilizers. In: Siddiqui ZA (ed) PGPR: Biocontrol and biofertilization, vol 1. Springer, Dordrecht, pp 143–172

    Google Scholar 

  • Gianinazzi S, Vosatka M (2004) Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 82:1264–1271

    CrossRef  Google Scholar 

  • Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37

    CrossRef  PubMed  Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    CAS  CrossRef  Google Scholar 

  • Herrera R (1992) Uso de las micorrizas en las actividades agrícolas y forestales de Cuba. Academia de Ciencias República de Cuba. http://209.85.215.104/search?q=cache:XulgtPBrN0J:www.academiaciencias.cu/paginas/presentacion/reconocimientos/premios.asp%3Fidp%3D321%26nsecc%3DCiencias%2520Agrarias%2520y%2520de%2520la%2520Pesca+MicoFert&hl=es&ct=clnk&cd=24&gl=co. Accessed 18 Nov 2008

  • Hungria M, Campo RJ (2007) Inoculantes microbianos: Situación en Brasil. In: Izaguirre-Mayoral ML, Labandera-C, Sanjuan J (eds) Biofertilizantes en Iberoamerica: Visión técnica, científica y empresarial, vol 1. Denad Internacional, Montevideo, pp 22–31

    Google Scholar 

  • Jaizme-Vega MC, Rodriguez-Romero AS, Hermoso CM, Declerck S (2003) Growth of micropropagated bananas colonized by root-organ culture produced arbuscular mycorrhizal fungi entrapped in Ca-alginate beads. Plant Soil 254:329–335

    CAS  CrossRef  Google Scholar 

  • Jolicoeur M, Williams RD, Chavarie C, Fortin JA, Archambault J (1999) Production of Glomus intraradices propagules, an arbuscular mycorrhizal fungus, in an airlift bioreactor. Biotechnol Bioeng 63:224–232

    CAS  CrossRef  PubMed  Google Scholar 

  • Kennedy IR, Choudhury ATMA, Kecskes ML (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244

    CAS  CrossRef  Google Scholar 

  • Khasa P, Furlan V, Fortin JA (1992) Response of some tropical plant species to endomycorrhizal fungi under field conditions. Trop Agr 69:279–283

    Google Scholar 

  • Krishna H, Singh SK, Patel VB, Khawale RN, Deshmukh PS, Jindal PC (2006) Arbuscular–mycorrhizal fungi alleviate transplantation shock in micropropagated grapevine (Vitis vinifera L.). J Hortic Sci Biotechnol 81:259–263

    Google Scholar 

  • Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil 252:151–167

    CAS  CrossRef  Google Scholar 

  • Lara AM (2008) Nueva herramienta en el tratamiento de semillas de granos y cereales. http://www.phcmexico.com.mx/phcsemillas1.html. Accessed 20 Nov 2008

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    CAS  CrossRef  PubMed  Google Scholar 

  • Malaysian Agri Hi Tech (2008) Mycogold. http://www.alibaba.com/catalog/11813495/Mycorrhiza_Root_Enhancer.html. Accessed 10 Nov 2008

  • Martinez-Romero E (2003) Diversity of RhizobiumPhaseolus vulgaris symbiosis: overview and perspectives. Plant Soil 252:11–23

    CAS  CrossRef  Google Scholar 

  • Marx DH, Marrs LF, Cordell CE (2002) Practical use of the mycorrhizal fungal technology in forestry, reclamation, arboriculture, agriculture, and horticulture. Dendrobiology 47:27–40

    Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3:1–7

    CAS  Google Scholar 

  • Mejía L, Palencia G (2005) Abono orgánico para el cultivo de cacao. http://www.turipana.org.co/abono_cacao.htm. Accessed 21 Nov 2008

  • Menna P, Hungria M, Barcellos FG, Bangel EV, Hess PN, Martinez-Romero E (2006) Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 29:315–332

    CAS  CrossRef  PubMed  Google Scholar 

  • Mohammad A, Mitra B, Khan AG (2004) Effects of sheared-root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agric Ecosyst Environ 103:245–249

    CrossRef  Google Scholar 

  • Moreno N (2007) Producción de biofertilizantes y biocontroladores para una agricultura sostenible. In: Sánchez J (ed) Potencial biotecnológico de microorganismos en ecosistemas y agroecosistemas, vol 1. Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, pp 261–269

    Google Scholar 

  • Moreno-Sarmiento N, Moreno-Rodriguez LF, Uribe D (2007) Biofertilizantes para la agricultura en Colombia. In: Izaguirre-Mayoral ML, Labandera-C, Sanjuan J (eds) Biofertilizantes en Iberoamerica: Visión técnica, científica y empresarial, vol 1. Denad Internacional, Montevideo, pp 38–45

    Google Scholar 

  • Muthukumarasamy R, Revathi G, Seshadri S, Lakshminarasimhan C (2002) Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Curr Sci 83:137–145

    CAS  Google Scholar 

  • OECD – FAO (2008) Agricultural outlook 2008–2017. OECD Publications, Paris

    CrossRef  Google Scholar 

  • Okon Y, Kapulnik Y (1986) Development and function of Azospirillum-inoculated roots. Plant Soil 90:3–16

    CAS  CrossRef  Google Scholar 

  • Okon Y, Vanderleyden J (1997) Root-associated Azospirillum species can stimulate plants. ASM News 63:364–370

    Google Scholar 

  • Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215

    CAS  CrossRef  Google Scholar 

  • Oliveira ALM, Canuto EL, Reis VM, Baldani JI (2003) Response of micropropagated sugarcane varieties to inoculation with endophytic diazotrophic bacteria. Braz J Microbiol 34:59–61

    Google Scholar 

  • Oliveira CA et al. (2008) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem doi:10.1016/j.soilbio.2008.01.012

    Google Scholar 

  • Omamo SW, Williams JC, Obare GA, Ndiwa NN (2002) Soil fertility management on small farms in Africa: evidence from Nakuru District, Kenya. Food Policy 27:159–170

    CrossRef  Google Scholar 

  • Ortega E (2007) Una visión del uso de fertilizantes en Cuba. In: Izaguirre-Mayoral ML, Labandera-C, Sanjuan J (eds) Biofertilizantes en Iberoamerica: Visión técnica, científica y empresarial, vol 1. Denad Internacional, Montevideo, pp 46–51

    Google Scholar 

  • Perry S, Laignelet A, Buitrago G (2004) El programa de biotecnología agrícola para pequeños productores. In: Montoya D (ed) Biotecnología para no biotecnologos. Universidad Nacional de Colombia, Unibiblos, Bogotá, pp 46–63

    Google Scholar 

  • Place F, Barrett CB, Freeman HA, Ramisch JJ, Vanlauwe B (2003) Prospects for integrated soil fertility management using organic and inorganic inputs: evidence from smallholder African agricultural systems. Food Policy 28:365–378

    CrossRef  Google Scholar 

  • Purakayastha TJ, Chhonkar PK (2001) Influence of vesicular–arbuscular mycorrhizal fungi (Glomus etunicatum L.) on mobilization of zinc in wetland rice (Oryza sativa L.). Biol Fertil Soils 33:323–327

    CAS  CrossRef  Google Scholar 

  • Quilambo OA, Weissenhorn I, Doddema H, Kuiper PJC, Stulen I (2005) Arbuscular mycorrhizal inoculation of peanut in low-fertile tropical soil I. Host-fungus compatibility. J Plant Nutr 28:1633–1644

    CAS  CrossRef  Google Scholar 

  • Rice WA, Olsen PE, Leggett ME (1994) Co-culture of Rhizobium meliloti and a phosphorus-solubilizing fungus (Penicillium bilaii) in sterile peat. Soil Biol Biochem 27:703–705

    CrossRef  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    CAS  CrossRef  PubMed  Google Scholar 

  • Roesti D et al (2006) Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol Biochem 38:1111–1120

    CAS  CrossRef  Google Scholar 

  • Saini VK, Bhandari SC, Tarafdar JC (2004) Comparison of crop yield, soil microbial C, N and P, N-fixation, nodulation and mycorrhizal infection in inoculated and non-inoculated sorghum and chickpea crops. Field Crops Res 89:39–47

    CrossRef  Google Scholar 

  • Sánchez de Prager M (2007) Las Endomicorrizas: expresión bioedáfica de importancia en el trópico. Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias, Palmira

    Google Scholar 

  • Sánchez J, Sosa T, Melgarejo L, Fuentes C (2007) Endomicorrizas: ecología, papel funcional, aplicaciones. In: Sánchez J (ed) Potencial biotecnológico de microorganismos en ecosistemas y agroecosistemas, vol 1. Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, pp 223–237

    Google Scholar 

  • Secilia J, Bagyaraj DJ (1992) Selection of efficient vesicular–arbuscular mycorrhizal fungi for wetland rice (Oryza sativa L.). Biol Fertil Soils 13:108–111

    CrossRef  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif mutant strains. Mol Plant Microbe Interact 14:358–366

    CAS  CrossRef  PubMed  Google Scholar 

  • Sieverding E, Friedrichsen J, Suden W (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft fuer Technische Zusammenarbeit (GTZ) Rossdorf

    Google Scholar 

  • Souza CAS, Siqueira JO, Oliveira E, Carvalho JG (1991) Development and nutrient levels of coffee seedlings inoculated with mycorrhizal fungi: effect of organic matter and simple superphosphate. Pesqui Agropecu Bras 26:1989–2005

    Google Scholar 

  • Taset M (2004) Alianza entre dos reinos. http://www.elhabanero.cubasi.cu/2004/noviembre/nro1133_04nov/cienc_04nov301.html. Accessed 21 Nov 2008

  • TERI (2008) The energy and resources institute centre for mycorrhizal research: mycorrhizal technology. http://www.teriin.org/index.php?option=com_content&task=view&id=66. Accessed 21 Nov 2008

  • Trindade AV, Siqueira JO, Sturmer SL (2006) Arbuscular mycorrhizal fungi in papaya plantations of Espirito Santo and Bahia, Brazil. Braz J Microbiol 37:283–289

    CrossRef  Google Scholar 

  • Vanlauwe B, Giller KE (2006) Popular myths around soil fertility management in sub-Saharan Africa. Agric Ecosyst Environ 116:34–46

    CrossRef  Google Scholar 

  • Woomer PL, Okalebo JR, Maritim HK, Obura PA, Mwaura FM, Nekesa P, Mukhwana EJ (2003) PREP-PAC: a nutrient replenishment product designed for smallholders in western Kenya. Agric Ecosyst Environ 100:295–303

    CrossRef  Google Scholar 

  • Yadav RS, Tarafdar JC (2003) Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds. Soil Biol Biochem 35:745–751

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

We are grateful to Sandra Espitia and Tiffany Sosa R. for valuable comments on the manuscript. This work was made possible through Ministerio de Agricultura y Desarrollo Rural and Colciencias funds to D. Uribe and J. Vanegas respectively. We do not have any commitment or particular interests to any of the commercial products cited in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Uribe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uribe, D., Sánchez-Nieves, J., Vanegas, J. (2010). Role of Microbial Biofertilizers in the Development of a Sustainable Agriculture in the Tropics. In: Dion, P. (eds) Soil Biology and Agriculture in the Tropics. Soil Biology, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05076-3_11

Download citation