Skip to main content

Agricultural Development in Tropical Acidic Soils: Potential and Limits of Phosphate-Solubilizing Bacteria

  • Chapter
  • First Online:
Soil Biology and Agriculture in the Tropics

Part of the book series: Soil Biology ((SOILBIOL,volume 21))

Abstract

Acidic soils of the tropical regions of the world represent the largest pool of potential land for future agriculture development. Unfortunately, most are poorly fertile due to a combination of factors including soil acidity, high aluminum concentration, and extremely low availability of soluble forms of phosphorus (P). The potential use of P-solubilizing bacteria (PSB) as biofertilizers represents one of the most attractive and cost-effective measures for increasing crop productivity in acidic soils. PSB are natural colonizers of the rhizosphere, able to mobilize P efficiently from the soil inorganic pool, mainly by producing and excreting organic acids. Therefore, an enormous amount of work has been conducted towards the isolation, identification, and characterization of thousands of PSB. Although the ability of PSB to promote plant growth has been demonstrated in vitro and in the greenhouse, results of field tests have been rather discouraging. Besides, few studies have been conducted in acidic soils. Thus, much remains to be done to fully exploit the enormous potential of PSB for crop production improvement in acidic soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arcand M, Schneider KD (2006) Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. An Acad Bras Cienc 78:791–807

    PubMed  CAS  Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Bandara WMMS, Seneviratne G, Kulasooriy SA (2006) Interactions among endophytic bacteria and fungi: effects and potentials. J Biosci 31:645–650

    Article  PubMed  CAS  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351

    Article  PubMed  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Brimecombe MJ, De Leij FA, Lynch JM (2001) The effect of root exudates on rhizosphere microbial populations. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil–plant interface. Marcel Dekker, New York, pp 95–140

    Google Scholar 

  • Çakmakçi R, Kantar F, Algur ÖF (1999) Sugar beet and barley yields in relation to Bacillus polymyxa and Bacillus megaterium var. phosphaticum inoculation. J Plant Nutr Soil Sci 162:437–442

    Article  Google Scholar 

  • Çakmakçi R, Dönmez F, Aydın A, Sahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Article  CAS  Google Scholar 

  • Campbell JL, Eick MJ (2002) Effects of oxyanions on the EDTA-promoted dissolution of goethite. Clays Clay Miner 50:336–341

    Article  CAS  Google Scholar 

  • Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E (2007) Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett 276:1–11

    Article  PubMed  CAS  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil 184:311–321

    Article  CAS  Google Scholar 

  • Chanway CP (1997) Inoculation of tree roots with plant growth promoting soil bacteria: an emerging technology for reforestation. Forest Sci 43:99–112

    Google Scholar 

  • Cunningham JE, Kuiack C (1992) Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl Environ Microbiol 58:1451–1458

    PubMed  CAS  Google Scholar 

  • De Freitas JR, Germida JJ (1990) Plant growth promoting Rhizobacteria for winter wheat. Can J Microbiol 36:265–272

    Article  Google Scholar 

  • De Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Article  Google Scholar 

  • Deubel A, Gransee A, Merbach W (2000) Transformation of organic rhizodepositions by rhizosphere bacteria and its influence on the availability of tertiary calcium phosphate. J Plant Nutr Soil Sci 163:387–392

    Article  CAS  Google Scholar 

  • Drouillon M, Merckx R (2003) The role of citric acid as a phosphorus mobilization mechanism in highly P-fixing soils. Gayana Bot 60:55–62

    Article  Google Scholar 

  • Dubey SK, Billore SD (1992) Phosphate solubilizing microorganisms (PSM) as inoculant and their role in augmenting crop productivity in India. Crop Res 5:11–24

    Google Scholar 

  • Dwivedi BS, Singh VK, Dwivedi V (2004) Application of phosphate rock with or without Aspergillus awamori inoculation to meet phosphorus demands of rice-wheat systems in the Indo-Gangetic plains of India. Aust J Exp Agr 44:1041–1050

    Article  CAS  Google Scholar 

  • Fankem H, Ngo Nkot L, Deubel A, Quinn J, Merbach W, Etoa FX, Nwaga D (2008) Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. Afr J Microbiol Res 2:171–178

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2004) The state of food and agriculture 2003–2004. Agricultural biotechnology: meeting the needs of the poor? In: Agriculture Series No. 35. FAO Corporate Document Repository. http://www.fao.org/docrep/006/Y5160E/Y5160E00.HTM. Accessed 20 Nov 2008

  • Food and Agriculture Organization of the United Nations (FAO) (2005) The state of food insecurity in the world: eradicating world hunger – key to achieving the Millenium development goals. FAO Corporate Document Repository. http://www.fao.org/docrep/008/a0200e/a0200e00.htm. Accessed 20 Nov 2008

  • Fein JB, Daughney CJ, Yee N, Davis T (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta 61:3319–3328

    Article  CAS  Google Scholar 

  • Gaind S, Gaur AC (1991) Thermotolerant phosphate solubilizing microorganisms and their interaction with mungbean. Plant Soil 133:141–149

    Article  CAS  Google Scholar 

  • Geelhoed JS, Hiemstra T, van Riemsdijk JH (1998) Competitive adsorption between phosphate and citrate on goethite. Environ Sci Technol 32:2119–2123

    Article  CAS  Google Scholar 

  • Gerretsen FC (1948) The influence of microorganisms on the phosphate intake by the plant. Plant Soil 1:51–81

    Article  CAS  Google Scholar 

  • Goenadi DH, Siswanto SY (2000) Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. Soil Sci Soc Am J 64:927–932

    CAS  Google Scholar 

  • Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol Agr Hort 12:185–193

    Google Scholar 

  • Goldstein AH (2007) Future trends in research on microbial phosphate solubilization: One hundred years of insolubility. In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Springer, Dordrecht, pp 91–96

    Chapter  Google Scholar 

  • Goldstein AH, Krishnaraj PU (2007) Phosphate solubilizing microorganisms vs. phosphate mobilizing microorganisms: what separates a phenotype from a trait? In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Springer, Dordrecht, pp 203–213

    Chapter  Google Scholar 

  • Goldstein AH, Braverman KE, Osorio N (1999) Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiol Ecol 30:295–300

    Article  PubMed  CAS  Google Scholar 

  • Gull FY, Hafeez I, Saleem M, Malik KA (2004) Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilizing bacteria and a mixed rhizobial culture. Aust J Exp Agric 44:623–628

    Article  CAS  Google Scholar 

  • Gupta RR, Singal R, Shanker A, Kuhad RC, Saxena RK (1994) A modified plate assay for screening phosphate solubilizing microorganisms. J Gen Appl Microbiol 40:255–260

    Article  CAS  Google Scholar 

  • Gupta A, Verma V, Qazi GN (1997) Transposon induced mutation in Gluconobacter oxydans with special reference to its direct-glucose oxidation metabolism. FEMS Microbiol Lett 147:181–188

    Article  PubMed  CAS  Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh LJ (1998) Effect of buffering on the phosphate solubilising ability of microorganisms. World J Microbiol Biotechnol 14:669–673

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharyya P, Chakrabartty PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92

    Article  CAS  Google Scholar 

  • Halder AK, Banerjee A, Mishra AK, Chakrabartty PK (1992) Role of NH4 or NO3 on release of soluble phosphate from hydroxyapatite by Rhizobium and Bradyrhizobium. J Basic Microbiol 32:325–330

    Article  CAS  Google Scholar 

  • Halvorson HO, Keynan A, Kornberg HL (1990) Utilization of calcium phosphates for microbial growth at alkaline pH. Soil Biol Biochem 22:887–890

    Article  CAS  Google Scholar 

  • Hamdali H, Bouizgarnea B, Hafidid M, Lebrihic A, Virolleb MJ, Ouhdouch Y (2008) Screening for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19

    Article  Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242

    Article  PubMed  CAS  Google Scholar 

  • Han HS, Supanjani LKD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    CAS  Google Scholar 

  • Han SH et al (2008) Inactivation of pqq genes of Enterobacter intermedium 60–2G reduces antifungal activity and induction of systemic resistance. FEMS Microbiol Lett 282:140–146

    Article  PubMed  CAS  Google Scholar 

  • Harris JN, New PB, Martin PM (2006) Laboratory tests can predict beneficial effects of phosphate-solubilising bacteria on plants. Soil Biol Biochem 38:1521–1526

    Article  CAS  Google Scholar 

  • He ZL, Zhu J (1998) Microbial utilization and transformation of phosphate adsorbed by variable charge minerals. Soil Biol Biochem 30:917–923

    Article  CAS  Google Scholar 

  • He ZL, Yang XE, Baligar BC, Calvert DV (2003) Microbiological and biochemical indexing systems for assessing quality of acid soils. Adv Agron 78:89–138

    Article  CAS  Google Scholar 

  • Herrera Estrella L (1999) Transgenic plants for tropical regions: some considerations about their development and their transfer to the small farmer. Proc Natl Acad Sci USA 96:5978–5981

    Article  PubMed  CAS  Google Scholar 

  • Hiradate S, Ma JF, Matsumoto H (2007) Strategies of plants to adapt to mineral stresses in problem soils. Adv Agron 96:65–132

    Article  CAS  Google Scholar 

  • Hoberg E, Marschner P, Lieberei R (2005) Organic acid exudation and pH changes by Gordonia sp and Pseudomonas fluorescens grown with P adsorbed to goethite. Microbiol Res 160:177–187

    Article  PubMed  CAS  Google Scholar 

  • Hocking J (2001) Organic acids exuded from roots in phosphorus uptake and aluminum tolerance of plants in acid soils. Adv Agron 74:63–97

    Article  CAS  Google Scholar 

  • Hutchison KJ, Hesterberg D (2004) Dissolution of phosphate in a phosphorus-enriched ultisol as affected by microbial reduction. J Environ Qual 33:1793–1802

    Article  PubMed  CAS  Google Scholar 

  • Hwangbo H et al (2003) 2-Ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr Microbiol 47:87–92

    Article  PubMed  CAS  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Illmer P, Schinner F (1995a) Solubilization of inorganic calcium phosphates — solubilization mechanisms. Soil Biol Biochem 27:257–263

    Article  CAS  Google Scholar 

  • Illmer P, Schinner F (1995b) Phosphate solubilizing microorganisms under non-sterile conditions. Bodenkultur 46:197–204

    Google Scholar 

  • Illmer P, Barbato A, Schinner F (1995) Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biol Biochem 27:265–270

    Article  CAS  Google Scholar 

  • Jacoud C, Faure D, Wadoux P, Bally R (1998) Development of strain specific probe to follow inoculated Azospirillum lipoferum CRT1 under field conditions and enhancement of maize root development by inoculation. FEMS Microbiol Ecol 27:43–51

    Article  CAS  Google Scholar 

  • Jayasinghearachchi HS, Seneviratne G (2006) Fungal solubilization of rock phosphate is enhanced by forming fungal–rhizobial biofilms. Soil Biol Biochem 38:405–408

    CAS  Google Scholar 

  • Jjemba PK, Alexander M (1999) Possible determinants of rhizosphere competence of bacteria. Soil Biol Biochem 31:623–632

    Article  CAS  Google Scholar 

  • Johnson SE, Loeppert RH (2006) Role of organic acids in phosphate mobilization from iron oxide. Soil Sci Soc Am J 70:222–234

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere — a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones DL, Darrah P (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257

    Article  CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, Van Hees PAW (2003) Organic acid behavior in soils — misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Kämpfer P (2007) Taxonomy of phosphate solubilizing bacteria. In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Springer, Dordrecht, pp 101–106

    Chapter  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2006) Role of phosphate-solubilizing microorganisms in sustainable agriculture. A review. Agron Sustain Dev 26:1–15

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, Mcdonald GA (1998) Effect of phosphate-solubilizing bacteria and vesicular–arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87

    Article  CAS  Google Scholar 

  • Kim KY, McDonald GA, Jordan D (1997) Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fertil Soils 24:347–352

    Article  CAS  Google Scholar 

  • Kraemer S (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18

    Article  CAS  Google Scholar 

  • Kumar V, Behl RK, Narula N (2001) Establishment of phosphate solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol Res 156:87–93

    Article  PubMed  CAS  Google Scholar 

  • Kundu BS, Gaur AC (1980) Effect of phosphobacteria on the yield and phosphate uptake of potato crop. Curr Sci 49:159

    Google Scholar 

  • Lin QM, Rao ZH, Sun YX, Yao J, Xing LJ (2002) Identification and practical application of silicate dissolving bacteria. Agr Sci China 1:81–85

    Google Scholar 

  • Linderman RG (1988) Mycorrhizal interaction with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Liu W, Xu X, Wu X, Yang Q, Luo Y, Christie P (2006) Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28:133–140

    Article  PubMed  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2008) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 20:1–7

    Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3:1–7

    CAS  Google Scholar 

  • Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56

    Article  PubMed  CAS  Google Scholar 

  • Mishustin EM, Naumova AN (1962) Bacterial fertilizers, their effectiveness and mode of action. Mikrobiologiya 31:442–452

    Google Scholar 

  • Muchovej RMC, Muchovej JJ, Alvarez VH (1989) Temporal relations of phosphorus fractions in an oxisol amended with rock phosphate and Thiobacillus thiooxidans. Soil Sci Soc Am J 53:1096–1100

    Article  Google Scholar 

  • Murray GC, Hesterberg D (2006) Iron and phosphate dissolution during abiotic reduction of ferrihydrite–boehmite mixtures. Soil Sci Soc Am J 70:1318–1327

    Article  CAS  Google Scholar 

  • Nahas E (1996) Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J Microbiol Biotechnol 12:567–572

    Article  CAS  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening of phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  PubMed  CAS  Google Scholar 

  • Nehl DB, Knox OGG (2006) Significance of bacteria in the rhizosphere. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Berlin, pp 89–119

    Chapter  Google Scholar 

  • Ocampo JA, Barea JM, Montoya EM (1975) Interaction between Azotobacter and “phosphobacteria” and their establishment in the rhizosphere as effected by soil fertility. Can J Microbiol 21:1160–1165

    Article  PubMed  CAS  Google Scholar 

  • Oliveira CA, et al. (2008) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado biome. Soil Biol Biochem. doi:10.1016/j.soilbio.2008.01.012

    Google Scholar 

  • Osorio Vega NW (2007) A review on beneficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake. Rev Fac Nal Agr Medellín 60:3621–3643

    Google Scholar 

  • Pal SS (1998) Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198:169–177

    Article  CAS  Google Scholar 

  • Peix A, Rivas-Boyero A, Mateos PF, Rodríguez-Barrueco C, Martínez-Molina E, Velázquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    Article  CAS  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology 17:362–370

    CAS  Google Scholar 

  • Rajan SSS, Watkinson JH, Sinclair AG (1996) Phosphate rock for direct application to soils. Adv Agron 57:77–159

    Article  CAS  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Soil biota: Management in sustainable farming systems. CSIRO Publishing, Collingwood, pp 50–62

    Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Richardson AE (2007) Making microorganisms mobilize soil phosphate. In: Velazquez E, Rodriguez-Barrueco C (eds) Microbial phosphate solubilization: Developments in plant and soil sciences. Kluwer Academic Publishers, Dordrecht, pp 85–90

    Chapter  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2007) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Springer, Dordrecht, pp 43–53

    Google Scholar 

  • Rong X, Huang Q, He X, Chen H, Cai P, Liang W (2008) Interaction of Pseudomonas putida with kaolinite and montmorillonite: a combination study by equilibrium adsorption, ITC, SEM and FTIR. Colloids Surf B 64:49–55

    Article  CAS  Google Scholar 

  • Şahin F, Çakmakçi R, Kantar F (2004) Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265:123–129

    Article  Google Scholar 

  • Singh HP (1990) Response of dual inoculation with Bradyrhizobium and VAM mycorrhiza or phosphate solubilizer on soybean in mollisol. In: Jalali BL, Chand H (eds) Trends in mycorrhizae. Research proceedings of the national conference on mycorrhiza. Hisar, India, pp 14–16

    Google Scholar 

  • Smith JH, Allison FE, Soulides DA (1961) Evaluation of Phosphobacterin as a soil inoculant. Soil Sci Soc Am J 25:109–111

    Article  CAS  Google Scholar 

  • Sperber JI (1958a) The incidence of apatite-solubilizing organisms in the rhizosphere and soil. J Agric Res 9:778–781

    Article  CAS  Google Scholar 

  • Sperber JI (1958b) Solution of apatite by soil microorganisms producing organic acids. Aust J Agric Res 9:782–787

    Article  CAS  Google Scholar 

  • Sridevi M, Mallaiah KV, Yadav NCS (2007) Phosphate solublization by Rhizobium isolates from Crotalaria species. J Plant Sci 2:635–639

    Article  CAS  Google Scholar 

  • Srivastava S, Kausalya MT, Archana G, Rupela OP, Naresh-Kumar G (2007) Efficacy of organic acid secreting bacteria in solubilization of rock phosphate in acidic alfisols. In: Velazquez E, Rodriguez-Barrueco C (eds) Microbial phosphate solubilization: developments in plant and soil sciences. Kluwer Academic Publishers, Dordrecht, pp 117–124

    Chapter  Google Scholar 

  • Stamford NP, Santos PR, Santos CES, Freitas ADS, Dias SHL, Lira MA Jr (2007) Agronomic effectiveness of biofertilizers with phosphate rock, sulphur and Acidithiobacillus for yam bean grown on a Brazilian tableland acidic soil. Biores Technol 98:1311–1318

    Article  CAS  Google Scholar 

  • Stemmler SJ, Berthelin J (2003) Microbial activity as a major factor in the mobilization of iron in the humid tropics. Eur J Soil Sci 54:725–733

    Article  CAS  Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res 77:43–49

    Article  Google Scholar 

  • Tang WZ, Pasternak JJ, Glick BR (1995) Persistence in soil of the plant growth promoting rhizobacterium Pseudomonas putida GR12–2 and genetically manipulated derived strains. Can J Microbiol 4:445–451

    Article  Google Scholar 

  • Tiwari VN, Lehri LK, Pathak AN (1989) Effect of inoculation crops with phospho-microbes. Exp Agric 25:47–50

    Article  Google Scholar 

  • Toro M, Azcón R, Herrera R (1996) Effects on yield and nutrition of mycorrhizal and nodulated Pueraria phaseoloides exerted by P-solubilizing rhizobacteria. Biol Fertil Soils 21:23–29

    Article  Google Scholar 

  • Toro M, Azcón R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    PubMed  CAS  Google Scholar 

  • Turner BL, Frossard E, Oberson A (2006) Enhancing phosphorus availability in low-fertility soils. In: Uphoff NT et al (eds) Biological approaches to sustainable soil systems. CRC Press, Boca Raton, FL, pp 191–205

    Chapter  Google Scholar 

  • Vassilev N, Vassileva M (2003) Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Appl Microbiol Biotechnol 61:435–440

    PubMed  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Fenice M, Federici F (2001) Immobilized cell technology applied in solubilization of insoluble inorganic rock phosphates and P plant acquisition. Bioresour Technol 79:263–271

    Article  PubMed  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    Article  PubMed  CAS  Google Scholar 

  • von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

  • Wang Y, He Y, Zhang H, Schroder J, Li C, Zhou D (2008) Phosphate mobilization by citric, tartaric, and oxalic acids in a clay loam ultisol. Soil Sci Soc Am J 72:1263–1268

    Article  CAS  Google Scholar 

  • Weisskopf L, Tomasi N, Santelia D, Martinoia E, Langlade NB, Tabacchi R, Abou-Mansour E (2006) Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage. New Phytol 171:657–668

    PubMed  CAS  Google Scholar 

  • Welbaum GE, Sturz AV, Dong Z, Nowak J (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Welch SA, Taunton AE, Banfield JF (2002) Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiol J 19:343–367

    Article  CAS  Google Scholar 

  • Wightman PG, Fein JB (2004) The effect of bacterial cell wall adsorption on mineral solubilities. Chem Geol 212:247–254

    Article  CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Whitelaw MA, Harden TJ, Helyar KR (1999) Phosphate solubilization in solution culture by the fungus Penicillium radicum. Soil Biol Biochem 31:655–665

    Article  CAS  Google Scholar 

  • Widada J, Damarjaya DI, Kabirun S (2007) The interactive effects of arbuscular mycorrhizal fungi and rhizobacteria on the growth and nutrients uptake of sorghum in acid soil. In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Springer, Dordrecht, pp 173–177

    Chapter  Google Scholar 

  • Xie JC (1998) Present situation and prospects for the world’s fertilizer use. Plant Nutr Fertil Sci 4:321–330

    Google Scholar 

  • Yao H, He ZL, Wilson MJ, Campbell DC (2000) Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecol 40:223–237

    CAS  Google Scholar 

  • Yi Y, Huang W, Ge YJ (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. J Microbiol Biotechnol 24:1059–1065

    Article  CAS  Google Scholar 

  • Young EO, Ross DS (2001) Phosphate release from seasonally flooded soils: a laboratory microcosm study. J Environ Qual 30:91–101

    Article  PubMed  CAS  Google Scholar 

  • Young IM, Crawford JW (2004) Interactions and self-organization in the soil–microbe complex. Science 1304:1634–1637

    Article  CAS  Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 8:97–167

    Google Scholar 

  • Zapata F, Roy RN (2004) Use of phosphate rock for sustainable agriculture. In: Fertilizer and Plant Nutrition Bulletin 13, Food and Agriculture Organization of the United Nations, FAO Corporate Document Repository. http://www.fao.org/docrep/007/y5053e/y5053e00.htm. Accessed 20 Nov 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Andrés Yarzábal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yarzábal, L.A. (2010). Agricultural Development in Tropical Acidic Soils: Potential and Limits of Phosphate-Solubilizing Bacteria. In: Dion, P. (eds) Soil Biology and Agriculture in the Tropics. Soil Biology, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05076-3_10

Download citation

Publish with us

Policies and ethics