Skip to main content

Abstract

ReCell® is a technique for harvesting cells from the ­dermal–epidermal junction of the skin for delivery to the wound as a cellular suspension [1]. It is used to facilitate rapid epithelialisation in isolation and in association with standard wound repair techniques. The kit harvests cells from a non-injured site, which are programmed for regeneration [2] and introduces them into a wounded site to enhance repair. The goal is to achieve a wound healing by a tailored approach to match the donor site with the recipient defect as closely as possible and to reduce donor site morbidity [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wood FM (2002) Clinical potential of cellular autologous epithelial suspension. Wounds 15:16–22

    Google Scholar 

  2. Marchisio PC (1991) Polarized Expression of Integrin Receptors (ά6 β4, ά2 βά, and άvβ5) and their Relationships with the Cytoskeleton and Basement Membrane matrix in Cultured Human Keratinocytes. J. Cell Bio 112: 761–773

    Article  CAS  Google Scholar 

  3. Martin P (1997) Wound healing - aiming for perfect skin regeneration. Science 276:75–81

    Article  PubMed  CAS  Google Scholar 

  4. Brown TL, Muller MJ (2003) Parsimony simplicity and survival in burn care. Burns 29:197–198

    Article  PubMed  Google Scholar 

  5. Herndon DN, Barrow RE, Rutan RL, Ritan DC, Desai MH (1987) A comparison of conservative versus early excision therapies in severely burned patients. Ann Surg 209:547–553

    Article  PubMed  CAS  Google Scholar 

  6. Mountford EM (1995) Implications for Wound Healing of Patient age and Time Elapsed Since Burn Injury. J Wound Care 4: 32–35

    CAS  Google Scholar 

  7. Wood FM, Kolybaba ML, Allen P (2006) The use of cultured epithelial autograft in the treatment of major burn: eleven years of clinical experience. Burns 32:538–544

    Article  PubMed  CAS  Google Scholar 

  8. Dietch EA, Wheelan TM, Rose MP, et al (1983) Hypertrophic burn scars: analysis of variables. J Trauma 23(10): 895-898

    Article  Google Scholar 

  9. Rea SM, Goodwin-Walters A, Wood FM (2006) Surgeons and scars: differences between patients and surgeons in the perceived requirement for reconstructive surgery following burn injury. Burns 32(3): 276–283

    Article  PubMed  Google Scholar 

  10. Engrav LH, Heimbach DM, Reus JL, Harnar TJ, Marvin JA (1983) Early excision and grafting vs. nonoperative treatment of burns of indeterminant depth: a randomized prospective study. J Trauma 23:1001–1014

    Article  PubMed  CAS  Google Scholar 

  11. Stoner ML, Wood FM (2000) The treatment of hypopigmentation lesions with cultured epithelial autograft. J Burn Care Rehabil 21(1 pt1): 50–54

    Article  PubMed  CAS  Google Scholar 

  12. Navarro FA, Stoner ML, Lee HB, et al (2001) Melanocyte repopulation in full-thickness wounds using a cell spray apparatus. J Burn Care Rehab 22:41–46

    Article  CAS  Google Scholar 

  13. Navarro FA, Stoner ML, Lee HB, Park CS, Huertas JC, Wood FM, Orgill DP (2000) Sprayed keratinocyte suspensions accelerate epidermal coverage in a porcine microwound model. J Burn Care Rehabil 21(6):513–518

    Article  PubMed  CAS  Google Scholar 

  14. Gravante G (2007) A randomized trial comparing ReCell system of epidermal cells delivery versus classic skin grafts for the treatment of deep partial thickness burns. Burns 33(8):966–972

    Article  PubMed  CAS  Google Scholar 

  15. Magnusson M, Papini RP, Rea SM, Reed C, Wood FM (2007) Cultured autologous keratinocytes in suspension accelerate epithelial maturation in in-vivo wound model shown by surface electrical capacitance (SEC) and ­transepidermal water loss (TEWL). Plast Reconstr Surg 119(2):495–499

    Article  PubMed  CAS  Google Scholar 

  16. Babu M, Wells A (2001) Dermal-epidermal communication in wound healing. Wounds 13(5):183–189

    Google Scholar 

  17. Wood FM Stoner ML (1996) Implication of basement membrane development on the underlying scar in partial thickness burn injury. Burns 22(6): 459–462

    Article  PubMed  CAS  Google Scholar 

  18. Wood FM, Liddiard K, Skinner A, Ballentyne J (1996) Scar management of cultured epithelial autograft. Burns. Burns 22:451–456

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona M. Wood FRACS, AM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wood, F.M. (2010). ReCell. In: Hyakusoku, H., Orgill, D., Teot, L., Pribaz, J., Ogawa, R. (eds) Color Atlas of Burn Reconstructive Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05070-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05070-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05069-5

  • Online ISBN: 978-3-642-05070-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics