Abstract
The incorporation of characteristic carbohydrate-based polymers into the cell wall is a general trait of most Gram-positive bacteria. These cell wall glycopolymers (CWGs) are attached to the membrane or the peptidoglycan and enclose, for example, the teichoic acids, which belong to the most prevalent types of CWG. The structure, function, and biosynthesis of CWGs are only superficially understood. CWG composition and structure is highly variable and often strain- and species-specific. Recent studies have yielded a more precise picture of the biosynthetic pathway for the wall teichoic acid (WTA) polymers, which are covalently anchored in the cell wall, and the lipoteichoic acid (LTA) polymers, which are attached to the cell membrane of Bacillus subtilis and Staphylococcus aureus. Some Gram-positive bacteria have other CWGs, aside from WTA and LTA, such as polyanionic teichuronic acids or uncharged lipoglycans. CWGs are important in bacterial physiology and various potential functions such as the control of autolytic enzymes, regulation of divalent cations, attachment of surface proteins, or protection against antibacterial molecules have been described. For those bacteria that colonize or infect the host organism, certain CWGs have been implicated in the adherence to host cells and the activation of the immune responses, for example through Toll-like receptors (TLRs). Additionally, CWGs are important targets for vaccines, antimicrobials and diagnostics. Thus CWGs represent an important field for scientific research.
Keywords
- Teichoic Acid
- Mycolic Acid
- Lipoteichoic Acid
- Wall Teichoic Acid
- Linkage Unit
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options




References
Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P (2002) Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 43:1–14
Anderson RG, Hussey H, Baddiley J (1972) The mechanism of wall synthesis in bacteria. The organization of enzymes and isoprenoid phosphates in the membrane. Biochem J 127:11–25
Araki Y, Ito E (1989) Linkage units in cell walls of Gram-positive bacteria. Crit Rev Microbiol 17:121–135
Armstrong JJ, Baddiley J, Buchanan JG, Davision AL, Kelemen MV, Neuhaus FC (1959) Composition of teichoic acids from a number of bacterial walls. Nature 184:247–248
Baddiley J (1989) Bacterial cell walls and membranes. Discovery of the teichoic acids. Bioessays 10:207–210
Bera A, Biswas R, Herbert S, Kulauzovic E, Weidenmaier C, Peschel A, Gotz F (2007) Influence of wall teichoic acid on lysozyme resistance in Staphylococcus aureus. J Bacteriol 189:280–283
Bergmann S, Hammerschmidt S (2006) Versatility of pneumococcal surface proteins. Microbiology 152:295–303
Bhavsar AP, Brown ED (2006) Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Mol Microbiol 60:1077–1090
Bierbaum G, Sahl HG (1987) Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J Bacteriol 169:5452–5458
Bracha R, Chang M, Fiedler F, Glaser L (1978) Biosynthesis of teichoic acids. Methods Enzymol 50:387–40
Brennan PJ (2003) Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinburgh) 83:91–97
Briken V, Porcelli SA, Besra GS, Kremer L (2004) Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol Microbiol 53:391–403
Brooks D, Mays LL, Hatefi Y, Young FE (1971) Glucosylation of teichoic acid: solubilization and partial characterization of the uridine diphosphoglucose:polyglycerolteichoic acid glucosyl transferase from membranes of Bacillus subtilis. J Bacteriol 107:223–229
Brown S, Zhang YH, Walker S (2008) A revised pathway proposed for Staphylococcus aureus wall teichoic acid biosynthesis based on in vitro reconstitution of the intracellular steps. Chem Biol 15:12–21
Chavakis T, Hussain M, Kanse SM, Peters G, Bretzel RG, Flock JI, Herrmann M, Preissner KT (2002) Staphylococcus aureus extracellular adherence protein serves as anti inflammatory factor by inhibiting the recruitment of host leukocytes. Nat Med 8:687–693
Choudhury B, Leoff C, Saile E, Wilkins P, Quinn CP, Kannenberg EL, Carlson RW (2006) The structure of the major cell wall polysaccharide of Bacillus anthracis is species specific. J Biol Chem 281:27932–27941
D'Elia MA, Millar KE, Beveridge TJ, Brown ED (2006) Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis. J Bacteriol 188:8313–8316
Debabov DV, Kiriukhin MY, Neuhaus FC (2000) Biosynthesis of lipoteichoic acid in Lactobacillus rhamnosus: role of DltD in D-alanylation. J Bacteriol 182:2855–2864
Deininger S, Stadelmaier A, von Aulock S, Morath S, Schmidt RR, Hartung T (2003) Definition of structural prerequisites for lipoteichoic acid-inducible cytokine induction by synthetic derivatives. J Immunol 170:4134–4138
Delmas C, Gilleron M, Brando T, Vercellone A, Gheorghui M, Riviere M, Puzo G (1997) Comparative structural study of the mannosylated-lipoarabinomannans from Mycobacterium bovis BCG vaccine strains: characterization and localization of succinates. Glycobiology 7:811–817
Doran KS, Engelson EJ, Khosravi AMH, Fedtke I, Equils O, Michelsen KS, Arditi M, Peschel A, Nizet V (2005) Group B Streptococcus blood-brain barrier invasion depends upon proper cell surface anchoring of lipoteichoic acid. J Clin Invest 115:2499–2507
Draing C, Pfitzenmaier M, Zummo S, Mancuso G, Geyer A, Hartung T, von Aulock S (2006) Comparison of lipoteichoic acid from different serotypes of Streptococcus pneumoniae. J Biol Chem 281:33849–33859
Endl J, Seidl HP, Fiedler F, Schleifer KH (1983) Chemical composition and structure of the cell wall teichoic acids of staphylococci. Arch Microbiol 135:215–223
Endo Y, Matsushita M, Fujita T (2007) Role of ficolin in innate immunity and its molecular basis. Immunobiology 212:371–379
Escaich S, Moreau F, Vongsouthi VSC, Malacain E, Prouvensier L, Gerusz V, Denis M, Saccomani M, Oxoby M (2007) Discovery of new Gram-positive antivirulence drugs: the first antivirulence molecule active in vivo. ICAAC Conference 2007. F2-958
Fabretti F, Theilacker C, Baldassarri L, Kaczynski Z, Kropec A, Holst O, Huebner J (2006) Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect Immun 74:4164–4171
Fedtke I, Mader D, Kohler T, Moll H, Nicholson G, Biswas R, Henseler K, Gotz F, Zahringer U, Peschel A (2007) A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol Microbiol 65:1078–1091
Ferguson JS, Voelker DR, McCormack FX, Schlesinger LS (1999) Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J Immunol 163:312–321
Fischer W (1988) Physiology of lipoteichoic acids in bacteria. Adv Microbiol Physiol 29:233–302
Fischer W (1994) Lipoteichoic acids and lipoglycans. In: Ghuysen J-M, Hakenbeck R (eds) Bacterial cell wall. Elsevier Science B.V, Amsterdam, The Netherlands, pp 199–215
Fischer W (2000) Phosphocholine of pneumococcal teichoic acids: role in bacterial physiology and pneumococcal infection. Res Microbiol 151:421–427
Fischer W, Behr T, Hartmann R, Peter-Katalinic J, Egge H (1993) Teichoic acid and lipoteichoic acid of Streptococcus pneumoniae possess identical chain structures. A reinvestigation of teichoid acid (C polysaccharide). Eur J Biochem 215:851–857
Formstone A, Carballido-Lopez R, Noirot P, Errington J, Scheffers DJ (2008) Localization and interactions of teichoic acid synthetic enzymes in Bacillus subtilis. J Bacteriol 190:1812–1821
Foster TJ, Hook M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6:484–488
Freymond PP, Lazarevic V, Soldo B, Karamata D (2006) Poly(glucosyl-N-acetylgalactosamine 1-phosphate), a wall teichoic acid of Bacillus subtilis 168: its biosynthetic pathway and mode of attachment to peptidoglycan. Microbiology 152:1709–1718
Ginsberg C, Zhang YH, Yuan Y, Walker S (2006) In vitro reconstitution of two essential steps in wall teichoic acid biosynthesis. ACS Chem Biol 1:25–28
Giudicelli S, Tomasz A (1984) Attachment of pneumococcal autolysin to wall teichoic acids, an essential step in enzymatic wall degradation. J Bacteriol 158:1188–1190
Glaser L, Lindsay B (1974) The synthesis of lipoteichoic acid carrier. Biochem Biophys Res Commun 59:1131–1136
Greenberg JW, Fischer W, Joiner KA (1996) Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect Immun 64:3318–3325
Gross M, Cramton S, Götz F, Peschel A (2001) Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 69:3423–3426
Grundling A, Schneewind O (2007a) Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc Natl Acad Sci USA 104:8478–8483
Grundling A, Schneewind O (2007b) Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J Bacteriol 189(6):2521–30
Han SH, Kim JH, Martin M, Michalek SM, Nahm MH (2003) Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating Toll-like receptor 2. Infect Immun 71:5541–5548
Hashimoto M, Tawaratsumida K, Kariya H, Kiyohara A, Suda Y, Krikae F, Kirikae T, Gotz F (2006) Not lipoteichoic acid but lipoproteins appear to be the dominant immunobiologically active compounds in Staphylococcus aureus. J Immunol 177:3162–3169
Hashimoto M, Furuyashiki M, Kaseya R, Fukada Y, Akimaru M, Aoyama K, Okuno T, Tamura T, Kirikae T, Kirikae F, Eiraku N, Morioka H, Fujimoto Y, Fukase K, Takashige K, Moriya Y, Kusumoto S, Suda Y (2007) Evidence of immunostimulating lipoprotein existing in the natural lipoteichoic acid fraction. Infect Immun 75:1926–1932
Heaton MP, Neuhaus FC (1992) Biosynthesis of D-alanyl-lipoteichoc acid: cloning, nucleotide sequence, and expression of the Lactobacillus casei gene for the D-alanine-activating enzyme. J Bacteriol 174:4707–4717
Henneke P, Morath S, Uematsu S, Weichert S, Pfitzenmaier M, Takeuchi O, Muller A, Poyart C, Akira S, Berner R, Teti G, Geyer A, Hartung T, Trieu-Cuot P, Kasper DL, Golenbock DT (2005) Role of lipoteichoic acid in the phagocyte response to group B streptococcus. J Immunol 174:6449–6455
Heptinstall S, Archibald AR, Baddiley J (1970) Teichoic acids and membrane function in bacteria. Nature 225:519–521
Herbert S, Bera A, Nerz C, Kraus D, Peschel A, Goerke C, Meehl M, Cheung A, Gotz F (2007) Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog 3:981–994
Hermann C, Spreitzer I, Schroder NW, Morath S, Lehner MD, Fischer W, Schutt C, Schumann RR, Hartung T (2002) Cytokine induction by purified lipoteichoic acids from various bacterial species – role of LBP, sCD14, CD14 and failure to induce IL-12 and subsequent IFN-gamma release. Eur J Immunol 32:541–551
Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, Sovath S, Shamel L, Hartung T, Zahringer U, Beutler B (2005) CD36 is a sensor of diacylglycerides. Nature 433:523–527
Jiang Y, Oliver P, Davies KE, Platt N (2006) Identification and characterization of murine SCARA5, a novel class A scavenger receptor that is expressed by populations of epithelial cells. J Biol Chem 281:11834–11845
Jorasch P, Wolter FP, Zähringer U, Heinz E (1998) A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1, 2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol Microbiol 29:419–30
Jorasch P, Warnecke DC, Lindner B, Zähringer U, Heinz E (2000) Novel processive and nonprocessive glycosyltransferases from Staphylococcus aureus and Arabidopsis thaliana synthesize glycoglycerolipids, glycophospholipids, glycosphingolipids and glycosylsterols. Eur J Biochem 267:3770–3783
Kalka-Moll WM, Tzianabos AO, Bryant PW, Niemeyer M, Ploegh HL, Kasper DL (2002) Zwitterionic polysaccharides stimulate T cells by MHC class II-dependent interactions. J Immunol 169:6149–6153
Kiriukhin MY, Debabov DV, Shinabarger DL, Neuhaus FC (2001) Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase. J Bacteriol 183:3506–3514
Koch HU, Haas R, Fischer W (1984) The role of lipoteichoic acid biosynthesis in membrane lipid metabolism of growing Staphylococcus aureus. Eur J Biochem 138:357–363
Koch HU, Doker R, Fischer W (1985) Maintenance of D-alanine ester substitution of lipoteichoic acid by reesterification in Staphylococcus aureus. J Bacteriol 164:1211–1217
Kohler T, Weidenmaier C, Peschel A (2009a) Wall teichoic acids protects Staphylococcus aureus against antimicrobial fatty acids from human skin. J Bacteriol 191(13):4482–4484
Kohler T, Xia G, Kulausovic E, Peschel A (2009b) Teichoic acids, lipoteichoic acids, and related cell wall glycopolymers of Gram-positive bacteria. In: Moran A (ed) Microbial Glycobiology: structures, relevance and applications. Elsevier, Amsterdam, pp 75–91
Koprivnjak T, Weidenmaier C, Peschel A, Weiss JP (2008) Wall teichoic acid deficiency in Staphylococcus aureus confers selective resistance to mammalian group IIA phospholipase A(2) and human beta-defensin 3. Infect Immun 76:2169–2176
Kraus D, Herbert S, Kristian SA, Khosravi A, Nizet V, Gotz F, Peschel A (2008) The GraRS regulatory system controls Staphylococcus aureus susceptibility to antimicrobial host defenses. BMC Microbiol 8:85
Kristian SA, Lauth X, Nizet V, Götz F, Neumeister B, Peschel A, Landmann R (2003) Alanylation of teichoic acids protects Staphylococcus aureus against Toll-like receptor 2-dependent host defense in a mouse tissue cage infection model. J Infect Dis 188:414–423
Kristian SA, Datta V, Weidenmaier C, Kansal R, Fedtke I, Peschel A, Gallo RL, Nizet V (2005) D-alanylation of teichoic acid promotes group A Streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol 187:6719–6725
Kumar A, Ray P, Kanwar M, Sharma M, Varma S (2005) A comparative analysis of antibody repertoire against Staphylococcus aureus antigens in patients with deep-seated versus superficial staphylococcal infections. Int J Med Sci 2:129–136
Lancefield RC, Freimer EH (1966) Type-specific polysaccharide antigens of group B streptococci. J Hyg (London) 64:191–203
Lazarevic V, Karamata D (1995) The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol Microbiol 16:345–355
Leoff C, Saile E, Sue D, Wilkins P, Quinn CP, Carlson RW, Kannenberg EL (2007) Cell wall carbohydrate compositions of strains from the B. cereus group of species correlate with phylogenetic relatedness. J Bacteriol 190(1):112–121
Li M, Lai Y, Villaruz AE, Cha DJ, Sturdevant DE, Otto M (2007) Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci USA 104:9469–9474
Lopez R, Garcia E, Garcia P, Ronda C, Tomasz A (1982) Choline-containing bacteriophage receptors in Streptococcus pneumoniae. J Bacteriol 151:1581–1590
Lynch NJ, Roscher S, Hartung T, Morath S, Matsushita M, Maennel DN, Kuraya M, Fujita T, Schwaeble WJ (2004) L-ficolin specifically binds to lipoteichoic acid, a cell wall constituent of Gram-positive bacteria, and activates the lectin pathway of complement. J Immunol 172:1198–1202
May JJ, Finking R, Wiegeshoff F, Weber TT, Bandur N, Koert U, Marahiel MA (2005) Inhibition of the D-alanine: D-alanyl carrier protein ligase from Bacillus subtilis increases the bacterium's susceptibility to antibiotics that target the cell wall. FEBS J 272:993–3003
Mazmanian SK, Kasper DL (2006) The love-hate relationship between bacterial polysaccharides and the host immune system. Nat Rev Immunol 6:849–858
McLoughlin RM, Solinga RM, Rich J, Zaleski KJ, Cocchiaro JL, Risley A, Tzianabos AO, Lee JC (2006) CD4+ T cells and CXC chemokines modulate the pathogenesis of Staphylococcus aureus wound infections. Proc Natl Acad Sci USA 103:10408–10413
Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, Fouet A (2000) Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J 19:4473–4484
Mikusova K, Slayden RA, Besra GS, Brennan PJ (1995) Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob Agents Chemother 39:2484–2489
Mongodin E, Bajolet O, Cutrona J, Bonnet N, Dupuit F, Puchelle E, de Bentzmann S (2002) Fibronectin-binding proteins of Staphylococcus aureus are involved in adherence to human airway epithelium. Infect Immun 70:620–630
Nathenson SG, Ishimoto N, Anderson JS, Strominger JL (1966) Enzymatic synthesis and immunochemistry of alpha- and beta-N-acetylglucosaminylribitol linkages in teichoic acids from several strains of Staphylococcus aureus. J Biol Chem 241:651–658
Naumova IB, Shashkov AS (1997) Anionic polymers in cell walls of Gram-positive bacteria. Biochemistry (Moscow) 62:809–840
Navarre WW, Schneewind O (1999) Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229
Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 67:686–723
Neuhaus FC, Heaton MP, Debabov DV, Zhang Q (1996) The dlt operon in the biosynthesis of D-alanyl-lipoteichoic acid in Lactobacillus casei. Microb Drug Resist 2:77–84
Oku Y, Kurokawa K, Matuso M, Yamada S, Lee BL, Sekimizu K (2008) Pleiotropic roles of poly-glycerolphosphate synthase of lipoteichoic acid in the growth of Staphylococcus aureus cells. J Bacteriol 191:141–151
Park JT, Shaw DR, Chatterjee AN, Mirelman D, Wu T (1974) Mutants of staphylococci with altered cell walls. Ann NY Acad Sci 236:54–62
Park YS, Sweitzer TD, Dixon JE, Kent C (1993) Expression, purification, and characterization of CTP: glycerol-3-phosphate cytidylyltransferase from Bacillus subtilis. J Biol Chem 268:16648–16654
Pereira MP, Brown ED (2004) Bifunctional catalysis by CDP-ribitol synthase: convergent recruitment of reductase and cytidylyltransferase activities in Haemophilus influenzae and Staphylococcus aureus. Biochemistry 43:11802–11812
Pereira MP, Delia MA, Troczynska J, Brown ED (2008) Duplication of teichoic acid biosynthetic genes in Staphylococcus aureus leads to functionally redundant poly(ribitol phosphate) polymerases. J Bacteriol 190(16):5642–9
Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–536
Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins and other antimicrobial peptides. J Biol Chem 274:8405–8410
Peschel A, Vuong C, Otto M, Götz F (2000) The d-alanine residues of Staphylococcusaureus teichoic acids alter the susceptibility to vancomycin and the activity of autolysins. Antimicrob Agents Chemother 44:2845–2847
Polotsky VY, Fischer W, Ezekowitz AB, Joiner KA (1996) Interactions of human mannose-binding protein with lipoteichoic acids. Infect Immun 64:380–383
Polotsky VY, Belisle JT, Mikusova K, Ezekowitz RA, Joiner KA (1997) Interaction of human mannose-binding protein with Mycobacterium avium. J Infect Dis 175:1159–1168
Pooley HM, Karamata D (1994) Teichoic acid synthesis in Bacillus subtilis: genetic organization and biological roles. In: Ghuysen J-M, Hakenbeck R (eds) Bacterial Cell Wall. Elsevier Science B.V, Amsterdam, The Netherlands, pp 187–197
Potekhina NV, Tul'skaya EM, Naumova IB, Shashkov AS, Evtushenko LI (1993) Erythritolteichoic acid in the cell wall of Glycomyces tenuis VKM Ac-1250. Eur J Biochem 218:371–375
Powell DA, Duckworth M, Baddiley J (1975) A membrane-associated lipomannan in micrococci. Biochem J 151:387–397
Prigozy TI, Sieling PA, Clemens D, Stewart PL, Behar SM, Porcelli SA, Brenner MB, Modlin RL, Kronenberg M (1997) The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6:187–197
Qian Z, Yin Y, Zhang Y, Lu L, Li Y, Jiang Y (2006) Genomic characterization of ribitol teichoic acid synthesis in Staphylococcus aureus: genes, genomic organization and gene duplication. BMC Genomics 7:74
Sadovskaya I, Vinogradov E, Li J, Jabbouri S (2004) Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus epidermidis RP62A, a reference biofilm-positive strain. Carbohydr Res 339:1467–1473
Schäffer C, Messner P (2005) The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. Microbiology 151:643–651
Shashkov AS, Streshinskaya GM, Senchenkova SN, Kozlova YI, Alferova IV, Terekhova LP, Evtushenko LI (2006) Cell wall teichoic acids of streptomycetes of the phenetic cluster ‘Streptomyces fulvissimus’. Carbohydr Res 341:796–802
Shimaoka T, Kume N, Minami M, Hayashida K, Sawamura T, Kita T, Yonehara S (2001) LOX-1 supports adhesion of Gram-positive and Gram-negative bacteria. J Immunol 166:5108–5114
Sidobre S, Nigou J, Puzo G, Riviere M (2000) Lipoglycans are putative ligands for the human pulmonary surfactant protein A attachment to mycobacteria. Critical role of the lipids for lectin-carbohydrate recognition. J Biol Chem 275:2415–2422
Soldo B, Lazarevic V, Pagni M, Karamata D (1999) Teichuronic acid operon of Bacillus subtilis 168. Mol Microbiol 31:795–805
Soldo B, Lazarevic V, Karamata D (2002a) tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. Microbiology 148:2079–2087
Soldo B, Lazarevic V, Pooley HM, Karamata D (2002b) Characterization of a Bacillus subtilis thermosensitive teichoic acid-deficient mutant: gene mnaA (yvyH) encodes the UDP-N-acetylglucosamine 2-epimerase. J Bacteriol 184:4316–4320
Sugawara I, Yamada H, Li C, Mizuno S, Takeuchi O, Akira S (2003) Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol Immunol 47:327–336
Sutcliffe I (2005) Lipoarabinomannans – structurally diverse and functionally enigmatic macroamphiphiles of mycobacteria and related actinomycetes. Tuberculosis (Edinburgh) 85:205–206
Sutcliffe IC, Black GW, Harrington DJ (2008) Bioinformatic insights into the biosynthesis of the Group B carbohydrate in Streptococcus agalactiae. Microbiology 154:1354–1363
Takahashi M, Mori S, Shigeta S, Fujita T (2007) Role of MBL-associated serine protease (MASP) on activation of the lectin complement pathway. Adv Exp Med Biol 598:93–104
Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18:81–101
Tapping RI, Tobias PS (2003) Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling. J Endotoxin Res 9:264–268
Theilacker C, Krueger WA, Kropec A, Huebner J (2004) Rationale for the development of immunotherapy regimens against enterococcal infections. Vaccine 22(Suppl 1):S31–S38
Theilacker C, Kaczynski Z, Kropec A, Fabretti F, Sange T, Holst O, Huebner J (2006) Opsonic antibodies to Enterococcus faecalis strain 12030 are directed against lipoteichoic acid. Infect Immun 74:5703–5712
Tzianabos AO, Wang JY, Lee JC (2001) Structural rationale for the modulation of abscess formation by Staphylococcus aureus capsular polysaccharides. Proc Natl Acad Sci USA 98:9365–9370
van de Wetering JK, van Eijk M, van Golde LM, Hartung T, van Strijp JA, Batenburg JJ (2001) Characteristics of surfactant protein A and D binding to lipoteichoic acid and peptidoglycan, 2 major cell wall components of Gram-positive bacteria. J Infect Dis 184:1143–1151
Verbrugh HA, Peters R, Rozenberg-Arska M, Peterson PK, Verhoef J (1981) Antibodies to cell wall peptidoglycan of Staphylococcus aureus in patients with serious staphylococcal infections. J Infect Dis 144:1–9
Verhoef J, Musher DM, Spika JS, Verbrugh HA, Jasper FC (1983) The effect of staphylococcal peptidoglycan on polymorphonuclear leukocytes in vitro and in vivo. Scand J Infect Dis Suppl 41:79–86
Vinogradov E, Sadovskaya I, Li J, Jabbouri S (2006) Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus aureus MN8m, a biofilm forming strain. Carbohydr Res 341:738–743
Ward JB (1981) Teichoic and teichuronic acids: biosynthesis, assembly and location. Microbiol Rev 45:211–243
Weidenmaier C, Peschel A (2008) Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 6:276–287
Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturyia T, Kalbacher H, Gross M, Nicholson G, Neumeister B, Mond JJ, Peschel A (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10:243–245
Weidenmaier C, Peschel A, Xiong YQ, Kristian SA, Dietz K, Yeaman MR, Bayer AS (2005a) Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J Infect Dis 191:1771–1777
Weidenmaier C, Peschel A, Kempf VA, Lucindo N, Yeaman MR, Bayer AS (2005b) DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Infect Immun 73:8033–8038
Weidenmaier C, Kokai-Kun JF, Kulauzovic E, Kohler T, Thumm G, Stoll H, Gotz F, Peschel A (2008) Differential roles of sortase-anchored surface proteins and wall teichoic acid in Staphylococcus aureus nasal colonization. Int J Med Microbiol 298(5–6):505–13
Weisman LE (2007) Antibody for the prevention of neonatal nosocomial staphylococcal infection: a review of the literature. Arch Pediatr 14(Suppl 1):S31–S34
Wendlinger G, Loessner MJ, Scherer S (1996) Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology 142:985–992
Xia G, Peschel A (2008) Toward the pathway of S. aureus WTA biosynthesis. Chem Biol 15:95–96
Acknowledgments
Our research is supported by grants from from the German Research Foundation (TR34, FOR449, GRK685, SFB685, SFB76, SPP1130), the European Union (LSHM-CT-2004-512093), the German Ministry of Education and Research (NGFN2, SkinStaph) and the IZKF program of the Medical Faculty, University of Tübingen, to A.P.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Rautenberg, M., Kohler, T., Xia, G., Kulauzovic, E., Peschel, A. (2010). Structure, Biosynthesis, and Function of Teichoic Acids and Related Cell Wall Glycopolymers in the Gram-positive Cell Envelope. In: König, H., Claus, H., Varma, A. (eds) Prokaryotic Cell Wall Compounds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05062-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-05062-6_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-05061-9
Online ISBN: 978-3-642-05062-6
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)